Introduction to structural causal models in science studies
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Sound causal inference is crucial for advancing the study of science. Incorrectly interpreting predictive effects
as causal might lead to ineffective or even detrimental policy recommendations. Many publications in science
studies lack appropriate methods to substantiate causal claims. We here provide an introduction to structural
causal models for science studies. Structural causal models, usually represented in a graphical form, allow
researchers to make their causal assumptions transparent and provide a foundation for causal inference. We
illustrate how to use structural causal models to conduct causal inference using regression models based on
simulated data of a hypothetical structural causal model of Open Science. The graphical representation of
structural causal models allows researchers to clearly communicate their assumptions and findings, thereby
fostering further discussion. We hope our introduction helps more researchers in science studies to consider

causality explicitly.
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I. INTRODUCTION

Causal questions are pervasive in science studies: what
are the effects of peer review on the quality of publica-
tions (Goodman et al., 1994)? What is the influence of
mentorship on protegees success (Malmgren, Ottino, and
Nunes Amaral, 2010)? Do incentives to share research
data lead to higher rates of data sharing (Woods and Pin-
field, 2022)? Yet, answers to such questions rarely con-
sider causality properly. Often, researchers investigate
causal questions, but fail to employ adequate methods
to make justified causal claims. As an example, there is
a burgeoning literature investigating whether publishing
Open Access leads to more citations. While the obser-
vational evidence seems to suggest such an effect, few
studies use methods that would permit justified causal
claims (Klebel et al., 2023). Most scientists acknowledge
that we should be “thinking clearly about correlation and
causation” (Rohrer, 2018), but the implications of causal
considerations are often ignored. Similar concerns were
raised in the context of biases in science, such as gender
bias (Traag and Waltman, 2022).

Uncovering causal effects is a challenge shared by many
scientific fields. There are large methodological differ-
ences between fields, also with regards to inferring causal-
ity. Some fields are experimental, while others are obser-
vational. Some fields are historical, examining a single un-
folded history, while others are contemporary, allowing
to repeat observations. Some fields already have a long
tradition with causal inference, while other fields have
paid less attention to causal inference. We believe that
science studies, regardless of whether that is scientomet-
rics, science of science, science and technology studies, or
sociology of science, have paid relatively little attention
to questions of causality, with some notable exceptions
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(e.g., Aagaard and Schneider, 2017; Glaser and Laudel,
2016; Bol, de Vaan, and van de Rijt, 2018; Tomkins,
Zhang, and Heavlin, 2017; Simsek, de Vaan, and van de
Rijt, 2024; Luc et al., 2021; Davis, 2020; Davis et al.,
2008). Quantitative science studies, like most quantita-
tive social sciences, has a long history of working with re-
gression models, and sometimes with more advanced sta-
tistical and mathematical models. However, it is not al-
ways clear how to interpret results from such approaches,
and we believe a more explicit discussion of causality
helps in clarifying and strengthening the interpretation.

We here provide an introduction to causal inference for
science studies. In particular, we rely on structural causal
models, which we believe are easier to communicate and
relate to compared to the (formally equivalent) frame-
work of potential outcomes. Multiple introductions to
structural causal modelling already exist, typically cov-
ering specific fields (Rohrer, 2018; Arif and MacNeil,
2023; Elwert, 2013; Hiinermund and Bareinboim, 2023;
Deffner, Rohrer, and McElreath, 2022). In addition, Liu
et al. (2023) discusses several other approaches to causal
inference in science studies, while Dong et al. (2022) fo-
cuses on matching strategies. Beyond these shorter and
domain-specific introductions, there are also comprehen-
sive text-books (Huntington-Klein, 2021; Cunningham,
2021; Pearl, 2009) that provide much more detail and
explanation than we can provide here. By applying struc-
tural causal models to familiar examples from science
studies, we aim to make causal inference more accessible
to researchers who are unfamiliar with these approaches.
We believe structural causal models are relevant to sci-
ence studies broadly, but they are particularly relevant
in quantitative science studies. We avoid technicalities,
so that the core ideas can be understood even with little
background in statistics. Although we focus on structural
causal models, not all causal thinking can necessarily be
easily expressed in these models.

The fundamental problem in causal inference is that we
never know for sure the answer to the “what-if” question.
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For instance, suppose that a professor received tenure.
We can observe her publications when she received tenure.
Would she also have received tenure, if she had not pub-
lished that one paper in a high-impact journal? We can-
not simply observe the answer, since that situation did
not materialize: she in fact did publish that paper in a
high-impact journal, and in fact did receive tenure. The
so-called counterfactual scenario, where she did not pub-
lish that paper and received tenure (or not), is unobserv-
able. This unobservable counterfactual scenario is the
fundamental problem.

Experiments are often helpful in getting causal answers.
By controlling the conditions, and only actively varying
one condition, we can recreate counterfactual scenarios,
at least on average, assuming conditions are properly ran-
domised. There are also some experimental studies in
science studies, for instance studying the effect of ran-
domly tweeting about a paper or not (Luc et al., 2021;
Davis, 2020), making papers randomly openly available
(Davis et al., 2008), or studying affiliation effects by ex-
perimentally comparing double-anonymous peer review
with single-anonymous peer review (Tomkins, Zhang,
and Heavlin, 2017). However, there are many questions
that do not allow for an experimental setup. For ex-
ample, randomising scholars’ career age or research field
is impossible. But even in experimental settings there
are limitations to causal inference. For instance, non-
compliance in experimental settings might present diffi-
culties (Balke and Pearl, 2012), such as certain types of
reviewers being more likely to try to identify authors in
a double-anonymous peer review experiment. Addition-
ally, scholars might be interested in identifying mediating
factors when running experiments, which further compli-
cates identifying causality (Rohrer et al., 2022). In other
words, causal inference presents a continuum of chal-
lenges, where experimental settings are typically easiest
for identifying causal effects—but certainly no panacea—
and observational settings are more challenging—but cer-
tainly not impossible.

In this paper we introduce a particular view on causal
inference, namely that of structural causal models (Pearl,
2009). Structural causal models are formally equivalent
to another causal inference framework known as potential
outcomes (Imbens and Rubin, 2015). We believe struc-
tural causal models are a relatively straightforward ap-
proach to causal inference with a clear visual representa-
tion of causality. It should help researchers to reason and
discuss their causal thinking more easily, even though not
all causal considerations can be expressed as structural
causal models. In the next section, we explain structural
causal models in more detail. We then cover some case
studies based on simulated data to illustrate how causal
estimates can be obtained in practice. We close with a
broader discussion on causality.

Il. STRUCTURAL CAUSAL MODELS

Structural causal models focus, as the name suggests,
on the structure of causality, not on the exact details.
That is, structural causal models are only concerned with
whether a certain factor is causally affected by another
factor, not whether that effect is linear, exponential, or
an “interaction” with some other effects. Such structural
models can be represented by causal diagrams. This
graphical approach makes it relatively easy to discuss
about causal models and assumptions, because it does
not necessarily involve complicated mathematics.

Sometimes, assumptions about specific functional de-
pendencies can be made, and this might help causal infer-
ence. For instance, a well-known causal inference strat-
egy is called “difference-in-difference”. A key assumption
in that strategy is something called “parallel trends”. Sev-
eral such approaches are discussed by Liu et al. (2023) in
the context of science studies. Not having to deal with
such details simplifies the approach and makes it easier
to understand the core concepts. But sometimes it also
simplifies too much. We can always make stronger as-
sumptions, and sometimes, these stronger assumptions
allow us to draw stronger conclusions. But without as-
sumptions, we cannot conclude anything.

The overall approach to causal inference using struc-
tural causal models would be the following:

1. Assume a certain structural causal model.

2. Use the assumed structural causal model to under-
stand how to identify causal effects.

3. Identified effects can be interpreted causally under
the assumed structural causal model.

Whatever structural causal model we construct, it will
always be an assumption. Constructing such a struc-
tural causal model can be based on domain expertise and
prior literature in the area. Whether a structural causal
model is realistic or not might be debated. In particu-
lar, a common issue is what is sometimes referred to as
“omitted-variable bias”, which refers to variables that are
incorrectly omitted from the structural causal model. By
making causal assumptions explicit, we can clarify such
discussions, and advance our common understanding.

We cannot always use empirical observations to dis-
cern between different structural causal models. That
is, different structural causal models can have the same
testable implications, and no observations would help
discern between them. However, there might also be
testable implications that do differ between different
structural causal models. We can then put the two (or
more) proposed theoretical structural causal models to
the test, using empirical evidence to decide which struc-
tural causal model is incorrect. Note the emphasis on
incorrect: we cannot say that a structural causal model
is correct, but we can say that a structural causal model
is incorrect, if it is inconsistent with the observations. In
summary, if we propose a certain structural causal model
to try to identify a causal effect, we should make sure that



its testable implications are at least consistent with the
empirical evidence we have.

Nonetheless, any structural causal model always re-
mains a simplification of reality, and is usually designed
for a specific causal question. For example, a structural
causal model of the entire academic system, containing
each and every detail about potential effects, is overly
detailed and likely not useful for the majority of empiri-
cal studies. For most studies, a simpler structural causal
model is probably more productive. In general, it is advis-
able to aim for structural causal models that are as simple
as possible, but as complex as necessary. In some cases,
problems of causal identification might emerge in simple
structural causal models, and are not heavily dependent
on specific details. Adding more nuance to a structural
causal model may then not solve the problem that was
identified in a simpler structural causal model. However,
sometimes problems might only become apparent with
more complex structural causal models, and additional
nuance might reveal that identifying a causal effect is
more challenging. We encounter and discuss this in some
examples later.

The main challenge then is to use a given structural
causal model to identify a causal effect: what factors
should be controlled for and, equally important, what
factors should not be controlled for? We introduce an
answer to that question in the next subsection. The in-
troduction we provide here only covers the basics. We
explicitly provide an introduction that is as simple as
possible, in order to be understandable to a broad au-
dience. Our introduction covers many typical situations
that can be encountered, but there are other cases that
cannot be understood without using a more formal logic
known as do-calculus (Pearl, 2009).

To provide an introduction useful to readers and schol-
ars in science studies, we consider the case of Open Sci-
ence, a movement and practice of making research pro-
cesses more open and transparent (Fecher and Friesike,
2014). Many studies have been conducted on the po-
tential impacts Open Science might have on academia,
society, and the economy (Klebel et al., 2023; Tennant
et al., 2016). However, studies on specific types of Open
Science impact, such as those on the Open Access cita-
tion advantage, often lack a clear understanding of causal
pathways and thus fail to develop a meaningful strategy
for estimating causal effects. Our introduction shows how
causal inference could be leveraged to improve these and
similar studies.

A. Introducing DAGs

It is convenient to represent a structural causal model
using a directed acyclic graph (DAG). A DAG is a di-
rected graph (sometimes called a network) where the
nodes (sometimes called vertices) represent variables, and
the links (sometimes called edges) represent causal effects.
A DAG is acyclic, meaning there are no directed cycles,
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Figure 1. Hypothetical structural causal model on Open Sci-
ence

so that if X — Z — Y, there cannot be a link Y — X
(or Y = Z or Z — X). See Table I for an overview of
some of the concepts related to DAGs.

If X — Y, it means that Y directly depends on X, that
is, Y is a function of X. We do not specify what function
exactly, so it can be a linear function, an exponential
function, or any other function. Interactions between
variables, moderators, hurdles, or any other functional
specifications are not indicated separately, and all can
be part of the function. A variable X that has a direct
causal effect on Y is called a parent of Y.

Throughout this introduction, we work with a single
example DAG on Open Science (see Figure 1). In this
DAG, Nowvelty and Rigour are both assumed to affect the
number of Citations and whether something will be Pub-
lished or not. Although preprints or working papers can
also be considered published, for the sake of simplicity
we here use the term Published to refer to journal publi-
cations only. Unlike Novelty, Rigour influences whether
data is made available openly: scholars that are doing
more rigorous research may be more likely to share their
data openly. Unlike Rigour, Nowvelty affects Data reuse;
open data from a more novel study may be more likely
to be reused by other researchers. If data is reused, the
original study might be cited again, so Data reuse is as-
sumed to affect Citations. In some cases, Open data will
be mandated by a journal, and so whether something will
be Published may also depend on Open data. Whether
something is Reproducible is assumed to be affected by
the Rigour of the study, and also by Open data itself:
studies that share data might make it easier for other
scientists to reproduce their findings. Finally, Citations
are also influenced by the Field of study (some fields are
more citation intensive), as is Open data (data sharing is
more common in some fields).

As explained earlier, this DAG is a simplification, and
we can debate whether it should be changed in some way.



Table I. Overview of concepts for Directed Acyclic Graphs (DAG).

Concept Explanation

Node, vertex Represents a variable in a DAG

Link, edge Represents a causal effect from one node on another in a DAG.
Acyclic No cycles (e.g. X - Y — Z — X) are present.

Parents The parents of a node Y are the nodes that point to Y.

Path

A series of nodes connected through links. Can be directed, when respecting the direction

of the link (e.g. X — Y — Z) or undirected, when ignoring the direction of the link (e.g.

X =Y« 2).
Causal path
X—>Z->Y)

A path from X to Y is causal if it is directed, i.e.

all links respect the direction (e.g.

Non-causal path A path between X and Y is non-causal if it is undirected, i.e. some links do not respect the

direction (e.g. X — Z «+ Y).
Open path
Y. See also Figure 2.
Closed path
and Y. See also Figure 2.

When a path between two nodes X and Y is open, there is an association between X and

When all paths between two nodes X and Y are closed, there is no association between X

Although the DAG is perhaps not fully realistic, it is plau-
sible and, by and large, consistent with the Open Science
literature. This DAG is constructed without one particu-
lar causal question in mind. Instead, we illustrate all the
necessary concepts using this example, and use this DAG
for multiple possible causal questions. For a particular
study, it might be best to construct a particular DAG for
the specific causal question. A reasonable starting point
for constructing a DAG for a particular causal question
of X on Y might be the following: (1) consider all factors
that affect and are affected by X and/or Y; (2) consider
how these factors are causally related between each other.
There might be additional relevant considerations, but it
should provide a reasonable simplification to start with.
A useful tool for working with DAGs is called dagitty
(Textor et al., 2016), which is available from the web-
site http://dagitty.net, which also contains many useful
pointers to additional introductions and tutorials.

B. Using DAGs to identify causal effects

We are interested in the causal effect of one variable
X on another variable Y. As the popular adage goes,
correlation does not imply causation. That is, X and Y
might be correlated, even if X does not affect Y. For
instance, in Figure 1 Reproducibility and Published are
correlated because both are affected by Open data, but
Reproducibility does not have any causal effect on Pub-
lished or vice versa.

Most scholars will be acquainted with problems of con-
founding effects, and that we somehow need to “control”
for confounders. But there are also other factors besides
confounders. Most scholars will also be acquainted with
mediators. Fewer scholars will be acquainted with col-
liders. Controlling for a collider often leads to incorrect
causal inferences. Hence, the question of what variables
to control for is more complicated than just controlling
for confounders. In particular, colliders raise the question

what we should not control for. In this section, we ex-
plain confounders, mediators and colliders in more detail,
and use DAGs to understand which factors we should
control for, and which factors we should not control for.

1. Paths in DAGs

In DAGs, we think of correlation and causation in
terms of paths between variables. In a graph, a path be-
tween two nodes consists of a series of connected nodes.
That is, we can move from one node to another across
the links between the nodes to reach another part of the
graph. For example, in Figure 1 we can move from Nov-
elty to Data reuse to Citations. In this example, the path
follows the direction of the links. Paths that follow the
direction of the links resemble the flow of causality, and
we refer to them as causal paths. That is, Novelty affects
Data reuse, which in turn affects Citations. This is an
indirect causal effect of Novelty on Citations, mediated
by Data reuse. There is another indirect causal effect
of Nowelty on Citations, mediated by Published. In addi-
tion, there is also a link directly from Nowelty to Citations,
which represents a direct causal effect. The combination
of the two indirect effects and the direct effect is known
as the total causal effect.

In addition, there are also paths that do not follow
the direction of the links. This can be most easily done
by simply ignoring the directions, and also allowing to
traverse links upstream, so to speak. There is then a path
between Open data and Clitations through Field. There is
not a single direction that we follow, and the path looks
like Open data < Field — Citations. Paths that do not
follow a single direction do not represent a causal effect,
and we refer to them as non-causal paths.

The key insight is that two variables that are connected
through certain paths are correlated, even if they are not
connected through any causal paths. We discern two
types of paths. One type of path, through which two
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Figure 2. Overview of open and closed nodes. Open nodes
are marked in green, closed nodes are marked in orange. If
all nodes on a path are open, the path is open. If any node
on a path is closed, the path is closed.

variables are correlated, is called an open path. Another
type of path, through which two variables are not corre-
lated, is called a closed path. If there are no open paths
between two variables, the two are not correlated. Both
causal paths and non-causal paths can be open or closed.
Indeed, if there is a non-causal path that is open, two
variables are correlated, but this “correlation does not
imply causation”.

Formalising this slightly, two variables X and Y are
correlated if there is an open path between X and Y. If
there are no open paths between X and Y, they are not
correlated. We can identify a causal effect of X on Y
by closing all non-causal paths between X and Y and by
opening all causal paths from X to Y. Whether a path
is open or closed depends on the types of variables on
a path, and whether those variables are conditioned on.
We explain this in more detail in the next subsection, and
provide a visual summary of the explanation in Figure 2.

As explained, all paths between X and Y need to be
considered, regardless of their direction. That is, X —
Z — Y is a type of path that we should consider, but
also X «+ Z - Y and X - Z «+ Y. Going back to
the paths we considered earlier: if we are interested in
the causal effect of Open data on Citations, there is a
directed, causal path from Open data to Data reuse to
Clitations, but there is also a non-causal path between
Open data and Citations that runs through Field.'

We call a path open when all the nodes, i.e. variables,
on the path are open. If there is a single closed variable
on a path, the entire path is closed. You can think of
this as a sort of information flow: if all nodes are open,
information can flow through, but a single closed node
blocks the flow of information. We can change whether
a variable should be considered open or closed by con-
ditioning on it. By closing a variable, we can therefore
close a path. By opening a variable, we can potentially
open a path, unless the path is still closed by another
variable.

1 Note that there are many additional paths in this example: Open
data < Rigour — Citations, Open data — Reproducibility
Rigour — Clitations, etc.

There are many ways in which we can condition on a
variable. A common approach in quantitative analysis is
to include such a variable in a regression analysis. But
another way is to analyse effects separately for various
categories of some variable. For example, we can condi-
tion on Field by performing an analysis for each field sep-
arately. This can be thought of as comparing cases only
within these categories. Other approaches include for ex-
ample so-called matching procedures. When matching
cases on a certain variable, we only compare cases which
are the same (or similar) on that variable. Finally, in sci-
ence studies, indicators are frequently “normalised”, es-
pecially citation indicators (Waltman and van Eck, 2019),
which amounts to conditioning on the variables used for
the normalisation.

2. Confounders, colliders and mediators

We can discern three types of variables: a confounder,
a collider and a mediator. Whether a variable Z is a
confounder, a collider or a mediator depends on how Z
is connected on a path between X and Y. Below we
consider each type of variable in more detail.

The first type of variable that we consider is a con-
founder. A confounder Z is always connected like X <«
Z — Y. Here Z is the common cause for both X and
Y. A confounder is open when not conditioned on. If
we condition on a confounder, it is closed. Usually, we
want to close paths with confounders, as the paths do not
represent a causal effect. For example, in Figure 1, Field
plays the role of a confounder on the path between Open
data and Citations. That path is open; we can close it by
conditioning on Field.

The second type of variable that we consider is a col-
lider. A collider Z is always connected like X — Z < Y.
Here Z is affected by both X and Y. A collider is closed
when not conditioned on. If we condition on a collider, it
is opened. Usually, we want to keep paths with a collider
closed, as the paths do not represent a causal effect. For
example, in Figure 1, Published plays the role of a collider
on the path between Rigour and Nowelty. That path is
closed; we can open it by conditioning on Published.

Finally, the third type of variable that we consider is
a mediator. A mediator Z is always connected like X —
Z — Y. Here, Z is affected by X and in turn Z affects
Y, so that Z mediates the indirect causal effect of X on
Y. A mediator is open when not conditioned on. If we
condition on a mediator, it is closed. Usually, we want to
keep paths with mediators open, as the paths represent a
causal effect. However, it might be that we are interested
in the direct effect of X on Y, instead of the total effect
of X on Y. By controlling for a mediator Z we can close
the indirect path X — Z — Y, and estimate the direct
path X — Y (assuming there are no other indirect paths
left). For example, in Figure 1, Open data is a mediator
between Rigour and Reproducibility. That path is open;
we can close it by conditioning on Open data. This is



relevant if we try to identify the direct causal effect of
Rigour on Reproducibility.

Note that the same variable can play different roles
in different paths. For example, in Figure 1, Open data
plays the role of a confounder in the path Reproducibility
< Open data — Data Reuse — Clitations. At the same
time, Open data plays the role of a collider in the path
Reproducibility < Rigour — Open data < Field — Ci-
tations. The former path is open, while the latter path
is closed. If we are interested in the causal effect, both
paths should be closed, since neither represents a causal
effect. However, if we condition on Open data, we close
the path where Open data is a confounder, while we open
the path where Open data is a collider. Hence, we can-
not close both paths by conditioning on Open data. If we
cannot condition on other variables, for example because
we did not collect such variables for a study, we have no
way of identifying the causal effect of Reproducibility on
Clitations.

Our assumed DAG implies that there should be no
causal effect of Reproducibility on Clitations. If we con-
dition on Open data and Rigour all non-causal paths are
closed, meaning that we then expect to find no correla-
tion. If, in contrast, we still find a non-zero correlation
after conditioning on Open data and Rigour, it means our
DAG is incorrect, and we need to revise it. This is only
one of the testable implications of our DAG, but there
are also others, and each offers an opportunity to falsify
our DAG. Even if all testable implications find empirical
support, this does not imply the DAG is correct, since
other DAGs might have the same testable implications.

Ill. CASE STUDIES

In this section, we apply the concepts introduced above
to potential research questions, demonstrating how to es-
timate causal effects. We show how a researcher can use
a hypothesised causal model of the phenomenon under
study to estimate causal effects. We use the DAG in-
troduced earlier (Figure 1) to illustrate our estimation
strategies.

For the purposes of these hypothetical examples, we
simulate data according to the DAG in Figure 1. As ex-
plained, a DAG only specifies that a variable is affected
by another variable, but it does not specify how. In Ap-
pendix A we provide more details of how we simulate
data.

Regression analysis is the common workhorse of quanti-
tative analysis, also in science studies. We use regression
analysis to illustrate how a researcher might analyse their
data to provide causal estimates®. Of course, more com-

2 We will write the equation in the typical style of R. For example,
Y ~ X + A, refers to the linear equation Y = a + Bx X + B4 A,
where we are interested in estimating the coefficients «, Sy and
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Figure 3. Effect of Rigour and Open data on Reproducibility

plex analytical approaches, such as Bayesian models or
non-linear models can also be used. Such models might
have great scientific, philosophical, or practical benefits,
but they are certainly no prerequisite for sound causal
inference. Moreover, having complex models is no sub-
stitute for sound causal inference, and wrong causal con-
clusions can still be drawn from complex models. From
that point of view, using simpler methods while paying
proper attention to causality might be preferred over us-
ing complex methods while ignoring issues of causality.

A. The effect of Rigour on Reproducibility

To provide a first impression of the simulated data,
and some intuition of how we can estimate causal effects,
we first analyse the effect of Rigour on Reproducibility
(see Figure 3). Rigour and Reproducibility are clearly
positively correlated: higher Rigour is associated with
higher Reproducibility. We also see that the overall level
of reproducibility tends to be higher if there is Open data.

Following our model (Figure 1), Rigour and Open data
are the only variables influencing Reproducibility. Let us
consider the total causal effect of Rigour on Reproducibil-
ity. There are several paths between Rigour and Re-
producibility, some causal, some non-causal. The model
shows two causal paths: a direct effect Rigour — Re-
producibility and an indirect effect Rigour — Open data
— Reproducibility, where the effect is mediated by Open
data. The non-causal paths are more convoluted: all run
through Citations and/or Published, with both variables
acting as colliders on these paths. The non-causal paths
are hence all closed, unless we condition on any of the
colliders.

Since the causal paths are open, and the non-causal
paths are closed, we do not have to control for anything.
We can estimate the total causal effect of Rigour on Re-
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Figure 4. Effect of Rigour on Reproducibility, estimated with
a simple linear regression.

producibility simply with a regression of the form

Reproducibility ~ Rigour

Since we simulated the data, we can calculate the
“true” causal effect, which in this case is 1 (see Ap-
pendix B for details). We can hence validate our regres-
sion approach and see if it is capable of correctly inferring
the true causal effect. Figure 4 shows that the regression
approach is capable of retrieving the correct result. We
deliberately chose a moderate sample size of 1000 for our
simulation. Point estimates derived from the simulated
data thus only approximate the theoretical values.

The example serves to highlight two points. First, it
can be helpful to plot the data to gain an intuitive un-
derstanding of what the assumed relationship looks like.
Second, sound causal inference does not necessarily in-
volve controlling for many variables. In some cases, a
simple regression might be all that is needed. Not all
causal effects are equally straightforward to measure, as
the next examples show.

B. The effect of Open data on Citations

Suppose we are interested in the total causal effect of
Open data on Citations. Previous research on the topic
indicates that articles sharing data tend to receive more
citations (Piwowar, Day, and Fridsma, 2007; Piwowar
and Vision, 2013; Kwon and Motohashi, 2021). Accord-
ing to our model (Figure 1), there are multiple pathways
from Open data to Citations. To estimate the causal ef-
fect, we need to make sure that all causal paths are open,
and all non-causal paths are closed (see panel A in Fig-
ure 5).

There are two causal paths, both indirect: one medi-
ated by Data reuse and one mediated by Published. To
estimate the total causal effect of Open data on Citations
we should not control for either Data reuse or Published.
In contrast, typical approaches in scientometrics examine
only the literature published in journals and thereby im-
plicitly condition on Published. This implicit condition-

ing closes the causal path, and thus biases our estimate
of the total causal effect of Open data on Citations.

The non-causal paths pass through Rigour, Field, Re-
producibility or Novelty. On all paths passing through
Rigour, it acts as a confounder, and we can hence close all
these non-causal paths by controlling for Rigour. There
is only one non-causal path passing through Field, where
it acts as a confounder, and we can close the path by con-
ditioning on it. The non-causal paths that pass through
Reproducibility are already closed, because it acts as a
collider on those paths. Finally, all non-causal paths
passing through Nowelty are already closed because Data
reuse and Published act as colliders on those paths. In
summary, we should control for Rigour and Field.

The final regression model to estimate the causal effect
of Open data on Citations is thus as follows:

Citations ~ Open data + Field + Rigour

Panel B of Figure 5 shows the effect estimates from
our regression, alongside the true effect of Open data on
Clitations, which is 5.39. We can see that our model is
indeed able to estimate the causal effect of Open data on
Clitations.

This example highlights key components of causal in-
ference: controlling for confounders (Rigour and Field),
not controlling for mediators (Data reuse and Published),
and not controlling for colliders (Reproducibility). This
shows that constructing an appropriate DAG is very help-
ful when aiming to draw causal conclusions. Without
making assumptions explicit via a DAG, it would be
much more difficult to discuss which variables should be
controlled for and which not.

Some researchers might be tempted to defer the de-
cision of what variables to control for to the data (for
example via stepwise regression) or not make any de-
cision at all by simply including all available variables,
an approach termed “causal salad” by McElreath (2020).
However, neither approach is able to correctly identify
the correct variables to control for. Stepwise regression
would in this case suggest including the mediating vari-
ables (and even excluding Open data), leading to wrong
causal conclusions (see Appendix D). Including all vari-
ables could similarly lead the researcher to conclude that
Open data has no effect on Citations (see Appendix E).

The example highlights that relatively simple DAGs
are often sufficient to uncover limitations to identifying
causal effects. For instance, if we had not measured Field,
controlling for it and identifying the causal effect would
become impossible. In that case, it is irrelevant whether
there are any other confounding effects between Citations
and Open data, since those effects do not alleviate the
problem of being unable to control for Field.
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Figure 5. Effect of Open data on Citations. A: DAG illustrating which variables to condition on (or not). Open nodes are
marked in green, closed nodes are marked in orange, and nodes that are open in one path but closed in another are marked

semi-green and semi-orange.
coefficients with 95%-CI).

C. The effect of Open data on Reproducibility

Suppose we are interested in the causal effect of Open
data on Reproducibility. Such an effect is often assumed
in debates on how to increase the reproducibility across
the scholarly literature (Molloy, 2011). The empirical
evidence so far is less convincing (Nuijten et al., 2017;
Hardwicke et al., 2018, 2021; Nosek et al., 2022, p. 721).
In our DAG in Figure 1, we assume there is a causal ef-
fect of Open data on Reproducibility. The causal effect
is direct, there is no indirect effect of Open data on Re-
producibility. Although the DAG does not specify these
parametric assumptions, in our simulation, the effect is
positive.

1. Conditioning on a collider may bias estimates

Many bibliometric databases predominantly cover re-
search published in journals or conferences. Science stud-
ies frequently relies on such bibliometric databases for
analysis. By only considering the literature published in
journals, we implicitly condition on Published. On the
path Open data — Published < Rigour — Reproducibil-
ity, Published acts as a collider. As discussed in Section 11,
conditioning on a collider can bias our estimates.

We show the level of Reproducibility for Open data
when considering only research that is Published in Fig-
ure 6. The level of Reproducibility is then lower with

Nodes that are controlled for are marked by a thick outline.

B: Effect estimate (regression

N
o

—
(o5

Reproducibility

1.6

1.4

1.2
Closed data Open data

Figure 6. Reproducibility of research published in journals
with and without Open data. Displaying means with 95%-CI.

Open data than without Open data. This is rather coun-
terintuitive, since the causal effect of Open data on Re-
producibility is in fact positive in our model.

The apparent negative effect is due to the fact that
we conditioned on Published, by analysing only the pub-
lished research. If we condition on a collider, we open
that path; in this case we open the path Open data —
Published < Rigour — Reproducibility. How condition-



ing on a collider biases the estimates is difficult to foresee,
especially in more complicated cases. In this case, how-
ever, there is a reasonably intuitive explanation. In our
model, Published depends on both Open data and Rigour
(and Nowelty, but that is not relevant here): research is
more likely to be published in a journal if it has Open data
and if it is more rigorous. As a result, research that is
published in a journal without Open data tends to have
higher Rigour. If research had neither Open data nor
sufficiently high Rigour, it would be less likely to be pub-
lished in a journal at all®>. Therefore, published research
without Open data has higher Rigour. This higher Rigour
in turn affects Reproducibility, leading to higher Repro-
ducibility for published research without Open data.

The example shows how we can draw wrong, and even
opposite, conclusions if we do not use clear causal think-
ing. Based on the results in Figure 6, some might incor-
rectly conclude that Open data has a negative causal ef-
fect on Reproducibilty. However, in our model, Open data
has a positive causal effect on Reproducibility. Hence, we
should take great care in interpreting empirical results
without causal reflection.

Sometimes, when determining what variables to con-
trol for, scholars are inclined to think in terms of ensur-
ing that cases are “comparable”, or to make sure that
we compare “like with like”. Although the intuition is
understandable, its application is only limited, and at
times can be misleading. That is, using the “like with
like” intuition, we might be inclined to condition on Pub-
lished, because we then compare published papers with
other published papers. If we do so, we bias the estima-
tion of the causal effect of Open data on Reproducibility,
as explained above. Comparing “like with like” may thus
create problems.

2. Identifying the causal effect

As explained, conditioning on the collider Published
opens the non-causal path Open data — Published <
Rigour — Reproducibility. This non-causal path is open
because Published is open (because it is a collider that is
conditioned on), and because Rigour is open (because it
is a confounder that is not conditioned on). We can hence
close this non-causal path by conditioning on Rigour. In
addition, Rigour acts as a confounder on the non-causal
path Open data < Rigour — Reproducibility. To identify
the causal effect, we hence also need to close this non-
causal path by conditioning on Rigour. In short, we close
both non-causal paths by conditioning on Rigour.

3 In our DAG, Published is also affected by Nowvelty, and the same
reasoning applies there. In this case, research that is published
in a journal, but that does not share Open data and has low
Rigour, is then more likely to have high Nowelty. Otherwise, it
again would most likely not have been published in a journal at
all.

Panel A in Figure 7 shows the DAG for this question.
There are no other non-causal paths that are open, and
no causal paths that are closed. The regression model is
thus

Reproducibility ~ Open data + Rigour

but still restricted to only published research.

The true effect of Open data on Reproducibility in
our simulation is 0.4 (see Table II). After controlling for
Rigour, our regression model is able to estimate this pa-
rameter correctly (panel B of Figure 7), although we are
only considering research published in journal articles,
therefore “conditioning on a collider”.

The reason we can estimate the parameter correctly is
that conditioning on Rigour closes the path Open data
— Published < Rigour — Reproducibility. Whether Pub-
lished is conditioned on is then irrelevant for the identi-
fication of the causal effect. If we consider all research
instead of only research published in journal articles, our
estimate only changes from 0.369 to 0.379.

In identifying the causal effect of Open data on Repro-
ducibility, we do not need to control for other variables,
such as Novelty. If there were an additional confounder
between Published and Data reuse, this would not change
anything in terms of what variables we should control
for to identify the effect of Open data on Reproducibility.
This shows how making the DAG richer and more nu-
anced does not necessarily change the identification. Of
course, other changes to the DAG do change the identi-
fication: if there were another confounder between Open
data and Reproducibility, we would need to control for it.

3. Interpreting regression coefficients and measurement
problems

Often, researchers not only interpret the coefficient
that is the subject of their main research question, but
also interpret the other coefficients. However, it is easy to
draw wrong conclusions for those other coefficients, and
interpret them incorrectly as causal effects. Since these
other effects are often represented in the second table in
an article, this was referred to as the “Table 2 fallacy” by
Westreich and Greenland (2013).

Let us briefly consider the coefficient for the factor that
we controlled for, namely Rigour. We estimated the co-
efficient for Rigour in our regression model to be about
1. What does this estimate represent? From the point
of view of the effect of Rigour on Reproducibility there
are two causal paths: one directly from Rigour to Repro-
ducibility and one indirectly, mediated by Open data (we
illustrated this earlier in Figure 4). Since we controlled
for Open data in our regression model, it means we closed
the indirect causal path. All other non-causal paths are
also closed, and so there is only one path that is still
open, which is the direct causal path from Rigour to Re-
producibility. Hence, our estimate of 1 should represent
the direct causal effect of Rigour on Reproducibility, and
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Figure 7. Effect of Open data on Reproducibility. A: DAG illustrating which variables to condition on (or not). Open nodes
are marked in green, closed nodes are marked in orange, and nodes that are open in one path but closed in another are
marked semi-green and semi-orange. Nodes that are controlled for are marked by a thick outline. B: Effect estimate (regression

coefficients with 95%-CI).

indeed this corresponds with the coefficient we used in
our simulation (see again Table II).

In the example above, we should interpret the esti-
mate of the effect of Rigour on Reproducibility as a di-
rect causal effect, not as a total causal effect. In other
cases, coefficients for the controlled factors might not cor-
respond to any causal effect. Indeed, we should carefully
reason about any effect we wish to identify, and not in-
terpret any estimates for controlled variables as causal
without further reflection.

Additionally, most empirical studies will suffer from
measurement problems. That is, the concept of interest
is often not observed directly, but measured indirectly
through some other proxies or indicators. These issues
can be readily incorporated in structural causal models,
and might make certain limitations explicit. For exam-
ple, in the analysis above we controlled for Rigour to
infer the causal effect of Open data on Reproducibility,
but in reality, we most likely cannot control for Rigour
directly. Instead, we are controlling for the measurement
of Rigour, for example as measured by expert assessment
of the level of rigour. We could include this in the struc-
tural causal model as Rigour — Rigour measurement. We
cannot directly control for Rigour, and we can only con-
trol for Rigour measurement, which does not (fully) close
the backdoor path between Open data and Reproducibil-
ity, and might hence still bias the estimate of the causal
effect. If Rigour measurement would additionally be af-
fected by other factors, such as Published, this might in-

troduce additional complications. Taking measurement
seriously can expose additional challenges that need to
be addressed (McElreath, 2020, Chapter 15; Esterling,
Brady, and Schwitzgebel, 2025).

IV. DISCUSSION

The study of science is a broad field with a variety
of methods. Academics have employed a range of per-
spectives to understand science’s inner workings, driven
by the field’s diversity in researchers’ disciplinary back-
grounds (Sugimoto et al., 2011; Liu et al., 2023). In
this paper we used structural causal models to highlight
why causal thinking is important for the study of science,
in particular for quantitative approaches. In doing so,
we do not mean to suggest that we always need to esti-
mate causal effects. Descriptive research is valuable in
itself, providing context for uncharted phenomena. Like-
wise, studies that predict certain outcomes are very use-
ful. However, neither descriptive nor predictive research
should be interpreted causally. Both descriptive and pre-
dictive work might be able to inform discussions about
possible causal mechanisms, and may provide some in-
sight about what might be happening. However, without
making causal thinking explicit, they can easily lead to
wrong interpretations and conclusions. We covered sev-
eral related potential issues in data analysis, such as the
Table 2 fallacy (see Section II1C) or the “causal salad”



approach (see Section 111 B).

A. The case for causal thinking

Quantitative research in science studies should make a
clear distinction between prediction and causation. For
example, if we observe that preregistered studies are more
likely to be reproducible, we might use this information
to predict which studies are more likely to be repro-
ducible. This might be a perfectly fine predictive model.
But is this also a causal effect, where preregistering a
study causes the results to be more reproducible? Or is
the observed relation between preregistration and repro-
ducibility due to an unobserved confounding factor, such
as methodological rigour? Only with an adequate causal
model can we try to answer such questions.

The difference between prediction and causation be-
comes critical when we make policy recommendations.
Should research funders mandate open data, in an at-
tempt to improve reproducibility? Besides the problems
that such a one-size-fits-all approach might have (Ross-
Hellauer et al., 2022), the crucial question is whether
or not such an intervention would increase reproducibil-
ity. In our simulation, we have assumed that Open data
has a moderate but positive effect on Reproducibility.
As discussed in Section 11 C, naively analysing the pub-
lished literature might lead one to incorrectly conclude
that Open data is detrimental to Reproducibility. It is
therefore imperative that policy recommendations are
grounded in careful causal analysis of empirical findings
to avoid serious unintended consequences.

More fundamentally, causal thinking is a useful de-
vice to connect theories to empirical analyses. Many
studies in the social sciences suffer from a vague connec-
tion between their theoretical or verbal description and
their empirical approach (Yarkoni, 2019). A key issue
is to translate theoretically derived research questions
into estimands (statements about what we aim to esti-
mate), and subsequently, strategies for estimating those
estimands (Lundberg, Johnson, and Stewart, 2021). In
other words, we have to link our statistical models and
estimates clearly to our theoretical concepts and research
questions (McElreath, 2020). Without causal thinking, it
is impossible to improve our theoretical understanding of
how things work. While building increasingly rich causal
diagrams is important in revealing underlying assump-
tions, this might also reveal deeper problems with our
theoretical accounts (Nettle, 2023). Deciding on which
parts of the system under study to include and which
to omit (Smaldino, 2023, 318), as well as resisting the
urge to add nuance on every turn (Healy, 2017), need to
accompany any empirical attempt of inferring causality.

Methodologically, structural causal models do not
make any assumptions about the functional relationship
between variables. If identifying a certain causal ef-
fect based on a structural causal model is not possible,
stronger assumptions might still allow to identify causal
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effects. As we have outlined in Section II, well-known
causal inference techniques, such as instrumental vari-
ables, difference-in-difference, and regression discontinu-
ity, rely on stronger assumptions, making assumptions
about the functional form of the relationships (e.g. lin-
ear, or parallel trends), or about thresholds or hurdles.
That is the essence of causal inference: we make assump-
tions to build a causal model, and use these assumptions
to argue whether we can identify the causal effect given
the observations we make.

Any claims of causal effects derived via causal infer-
ence will always depend on the assumptions made. Often,
we cannot verify the assumptions empirically, but they
might have implications that we can verify empirically.
If we find no empirical support for these testable impli-
cations, we might need to go back to the drawing board.
Finding empirical support for testable implications still
does not imply that our assumptions are correct; other
assumptions might have similar testable implications. In-
deed, we already emphasised this in the context of the
DAGs: we cannot say whether a DAG is correct, but we
might be able to say whether a DAG is incorrect.

Not everything can be modelled as a structural causal
model, particularly phenomena involving complex so-
ciocultural, political, and epistemic dynamics, as well
as feedback loops and specific parametric assumptions
that resist representation as causal paths. There is
also broader thinking and reflection of causality beyond
structural models, from historical and ethnographic ap-
proaches to narrative and critical perspectives on how
science develops. Nonetheless, we believe that structural
causal models are a very helpful tool to communicate
causal thinking among (quantitative) science study re-
searchers, even if not the only one.

B. Going beyond—why causal thinking is useful even if
causal inference is impossible

In practice, it might not always be possible to estimate
a causal effect, because some variables are not observed in
a study, or might even be unobservable (Rohrer, 2018).
We believe that making causal thinking explicit is still
highly beneficial to the broader research community in
such cases. First, the process of having gone through
the exercise of trying to construct a causal model is not
wasted, as the model itself might be useful. Researchers
might be able to build on the model in subsequent studies,
and refine or revise it.

Secondly, causal models make explicit researchers’ be-
liefs of how specific causal mechanisms work. Other re-
searchers might disagree with those causal models. This
is a feature, not a bug. By making disagreement visible,
it might be possible to uncover whether the various sug-
gested causal models have different empirically testable
implications. Empirical evidence for these testable im-
plications could then adjudicate between these various
causal models. Directing research towards studying such



adjudicating empirically testable implications advances
research further, and helps to build a more cumulative
evidence base.

Thirdly, causal models make explicit why causal es-
timates might be impossible in a given study. Often,
researchers state in their conclusion that there might be
missing confounders and that they therefore cannot draw
causal conclusions (but they may nonetheless proceed to
provide advice that implicitly assumes causality). Simply
stating that confounders may exist is not enough. If we,
as researchers, believe that we have missed confounders,
we should make explicit what we believe we missed. We
can of course never be sure that we considered all rele-
vant aspects, but that should not prevent us from trying
to be as explicit as possible.

By making explicit how a causal effect is not identifi-
able, we might be able to suggest variables that we should
try to collect in the future. Additionally, by making ex-
plicit how our estimates deviate from a causal effect, we
might make informed suggestions of the direction of this
deviation, e.g. whether we are under- or overestimating
the causal effect. Possibly, we might even use some form
of sensitivity analysis (Cinelli et al., 2019) to make more
informed suggestions.

The social sciences have a distinct advantage over other
scientific disciplines when causal inference is challenging:
we can talk to people. In case quantitative methods strug-
gle to identify causal relationships, qualitative methods
might still provide insight into causal effects, for instance
because in interviews people can point out what they
believe to be a causal effect. For example, suppose we
are interested in the effect of Open data on research ef-
ficiency but struggle to quantify the causal effect. We
could talk to researchers who have reused openly avail-
able datasets, asking whether and how publicly available
data has helped them to conduct their research more ef-
ficiently. Responses like these might uncover causal evi-
dence where quantitative methods encounter more diffi-
culties.

Finally, developing explicit causal models can benefit
qualitative research as well. For example, when develop-
ing an interview guide to study a particular phenomenon,
it could be helpful to first develop a clear understand-
ing of the potential causal pathways related to that phe-
nomenon. Furthermore, even if qualitative data cannot
easily quantify the precise strength of a causal relation-
ship, it may corroborate the structure of a causal model.
Ultimately, combining quantitative causal identification
strategies with direct qualitative insights on mechanisms
can lead to more comprehensive evidence (Munafo and
Smith, 2018; Tashakkori, Johnson, and Teddlie, 2021),
strengthening and validating our collective understand-
ing of science.
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As explained, a DAG only specifies that a variable is affected by another variable, but it does not specify how.
For simulating data, we do need to specify our DAG in Figure 1 in more detail. In particular, we sample Field
uniformly from two fields; we sample Rigour and Novelty from standard normal distributions (i.e. with a mean of 0
and a standard deviation of 1); we sample Open data and Published from Bernoulli distributions (i.e. Yes or No); and
we sample Data reuse, Reproducibility and Citations again from standard normal distributions. The effects of some
variables on other variables are represented by simple linear equations (using a logistic specification for the Bernoulli
distributions), with particular coefficients for the effects (see Table IT). These distributions are not necessarily realistic.
Yet, our aim is not to provide a realistic simulation, but to illustrate how causal inference can be applied. Relying on
standard normal distributions and linear equations simplifies the simulation model and the analyses of the simulated

data.

Table II: Coefficients for simulated data. They represent the
‘true’ effects for each path in the DAG, as well as basic prop-
erties for the equations (intercepts, sigma).

From To Coefficient
intercept  open_ data -3
rigour open__data 0.1
field open__data 1,5
intercept  published -1
novelty published 1
rigour published 2
open__data published 8
intercept  data_ reuse -1
open__data data_ reuse 2
novelty data_ reuse 1
intercept  reproducibility 1

open__data reproducibility 0.4

rigour reproducibility 1
intercept  citations -1
novelty citations 2
rigour citations 2
published citations 2
data_ reuse citations 2
field citations 10, 20
sigma none 1
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Appendix B: Theoretical effect of Rigour on Reproducibility
There is a direct effect of Rigour on Reproducibility and a indirect effect, mediated by Open data. Let X be Rigour,

Z Open data and Y Reproducibility. We then have
X ~ Normal(0, 1)

Z ~ Bernoulli(logistic(ay + X + ¢p))

Y ~ Normal(ay + X + 02, 0)

If we try to estimate a simple OLS Y = a + BX, then

- Cov(X,Y)
-~ Var(X)

Working out Cov(X,Y), we can use that Y = ay + vX + 0Z + €, where €, ~ Normal(0, ), and obtain that
Cov(X,Y) = yCov(X, X) 4+ 0Cov(X, Z) + Cov(X,€,),
where Cov(X, X) = Var(X, X) = 12 = 1 and Cov(X,¢,) = 0, because ¢, is independent of X. Hence, we obtain
Cov(X,Y) =~v+6Cov(X, 2).

Writing out Cov(X,Z), we find that Cov(X,Z) = E(XZ) because E(X) = 0. Then elaborating F(XZ) =
E(E(XZ|F)), we can expand E(XZ|F) as a sum

E(XZ|F) = /szP =z2|X=2z,F)P(X =z)dz
Obviously, £z = 0 when z = 0, while zz = z when z = 1. Hence, this simplifies to only the z = 1 part, such that
E(XZ|F)= /xP(Z =1|X=2,F)P(X =2)dz
or '
EXZ|F)= /yc -logistic(ay + Bz + ¢p) - f(x)dz,

i

where f(x) is the pdf of X ~ Normal(0,1). Unfortunately, this does not seem to have an analytical solution, so we
numerically integrate this.

The total causal effect of Rigour on Reproducibility is very close to the direct causal effect of Rigour on Reproducibility
(which is 1), because the indirect effect via Rigour — Open data is small.

Appendix C: Theoretical effect of Open data on citations

There are two causal paths of the effect of Open data on Citations. The first causal path is mediated by Data reuse
and the second is mediated by Published. Let X be Open data, Y be Citations, D be Data reuse and P be Published.
Since we use a normal distribution for Citations we can simply write

E(Y) =a+ ﬁDYD + BPYP + ﬂnovelty,Y : NOU@lty + Brigour,Y : ngour—i- Bﬁeld,Y : FZeld?

where we can consider Field a dummy variable, representing the effect of field 2 relative to field 1 (i.e. field 1 is the
reference category).
The change in Y, i.e. AY, relative to changing X, i.e. AX, from 0 to 1 is then

AY (X )7 AD(X) AP(X)
AX Bpy AX + Bpy AX

The first part is simple, since D is a normal distribution, yielding A(X = Bxp. The second part is more convo-

luted, since P is a logistic distribution of a normal variable. For that reason, we calculate AIAJ()‘(X) numerically using
logitnorm: :momentsLogitnorm (version 0.8.38) in R.



16

Appendix D: Validation of argument against stepwise regression

In Section I1I B, we claimed that stepwise regression to identify the effect of Open data on Citations would not work.
In particular, it suggests to include the mediating variables Data reuse and Published and to remove Open data from
the regression model. The output below demonstrates this behaviour.

We first start with a full model that includes all variables.

full_model <- Im(citations ~

., data = df)

Next, we let R select variables in a stepwise fashion, considering both directions (including or excluding variables)

at each step.

step_model <- MASS::stepAIC(full_model, direction = "both", trace = TRUE)

Start: AIC=14.39

citations ~ rigour + novelty + field +
data_reuse + reproducibility

Df Sum of Sq

- reproducibility 1
- open_data 1
<none>

- published
- rigour

- novelty

- data_reuse
- field

N e

Step: AIC=12.42

0.
0

407.
1683.
1946.
3620.

10158.

citations ~ rigour + novelty

data_reuse

Df
- open_data 1
<none>
+ reproducibility
- published
- novelty
- rigour
- data_reuse
- field

N e

Step: AIC=10.61

0

.2

8
9
4
3
0

Sum of Sq

0

0.
407.
1946.
3199.
3623.
10171.

citations ~ rigour + novelty

Df
<none>
+ open_data
+ reproducibility
- published
- novelty
- rigour
- data_reuse
- field

N e =

.2

0
8
4
3
4
5

Sum of Sq

0.

0.
505.
2394.
3281.
4743.
14922.

2
0
6
6
9
2
0

RSS

998.
998.
998.
1406.
2682.
2944.
4618.
11156.

field

A NN DO D

RSS

998.
998.
998.
1406.
2944 .
4197.
4621.
11170.

field

O 0 ~NO Wk bdO

+

RSS

998.
998.
998.
1504.
3393.
4280.
5741.
15920.

DO NN

We can see that the algorithm first removes

open_data + published +

AIC
12.42
12.59
14.39

354.90
1000.65
1094.02
1544.10
2426.01

open_data + published +

AIC
10.61
12.42
14.39

352.94
1092.06
1446.55
1642.79
2425.23

published + data_reuse

AIC
10.61
12.42
12.59

418.26
1231.78
1464 .06
1757.78
2777 .61

Open data, and then Reproducibility. The final model is then as follows:



summary (step_model)

Call:

Im(formula = citations ~ rigour + novelty + field + published +

data_reuse, data = df)

Residuals:
Min 1Q Median

3Q

Max

-3.08249 -0.68542 -0.01525 0.70217 3.02677

Coefficients:
Estimate Std.

(Intercept) -1.26727 0
rigour 1.92751 0
novelty 2.01798 0
field 10.11475 0
publishedTRUE 2.06206 0
data_reuse 1.95682 0

Error t value Pr(>|t]|)

.11955
.03372
.04133
.08299
.09192
.02848

Signif. codes: 0 '*xx' 0.001 '*x'

-10.
57.
48.

121.
22
68.

0.01

60
16
82
87

.43

71

<2e-16
<2e-16
<2e-16
<2e-16
<2e-16
<2e-16

*' 0.05 '.

k%%
k% %
* % %
* k%
k%%
* % %

'0.1 "

Residual standard error: 1.002 on 994 degrees of freedom

Multiple R-squared: 0.9878,

Adjusted R-squared:

F-statistic: 1.616e+04 on 5 and 994 DF,

Appendix E: The case against causal salad

0.9878

p-value: < 2.2e-16

1
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Table IIT illustrates the result of the ‘causal salad’ approach of including all variables. Because this model controls
for mediators, the effect of Open data on Citations appears to be zero. The researcher could thus be led to conclude

that Open data has no effect on Citations, which is incorrect.
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Table ITI. Example of “causal salad”. The “Correct model” to estimate the causal effect of Open data on Citations identifies
the effect to be 5.29. If the researcher were to include all variables, it might seem as if there was no effect of Open data on
Citations. Values in brackets show p-values.

Correct model ’Causal salad’ model

Intercept —2.519 —1.295
(<0.001) (<0.001)

Open data 5.294 —0.061
(<0.001) (0.655)

Field 10.213 10.140
(<0.001) (<0.001)

Rigour 2.355 1.919
(<0.001) (<0.001)

Novelty 2.010
(<0.001)

Data reuse 1.964
(<0.001)

Published 2.082
(<0.001)

Reproducibility 0.006
(0.849)

Num.Obs. 1000 1000

R2 0.726 0.988
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