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ABSTRACT
Computational experiments have become essential for scientific
discovery, allowing researchers to test hypotheses, analyze com-
plex datasets, and validate findings. However, as computational
experiments grow in scale and complexity, ensuring reproducibility
and managing detailed metadata becomes increasingly challenging,
especially when orchestrating complex sequence of computational
tasks. To address these challenges we have developed a virtual
laboratory called SCHEMA lab, focusing on capturing rich meta-
data such as experiment configurations and performance metrics,
to support computational reproducibility. SCHEMA lab enables
researchers to create experiments by grouping together multiple
executions and manage them throughout their life cycle. In this
demonstration paper, we present the SCHEMA lab architecture,
core functionalities, and implementation, emphasizing its potential
to significantly enhance reproducibility and efficiency in computa-
tional research.
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1 INTRODUCTION
Computational experiments are essential for advancing scientific
discovery, enabling researchers to test hypotheses, analyze data,
and simulate complex systems. The growing complexity of these ex-
periments, however, presents challenges related to reproducibility
and metadata management. Precise documentation and structured
execution environments have become essential to ensuring experi-
ments can be consistently reproduced and verified across diverse
computing infrastructures. As highlighted by Sandve et al. [10]
and Peng [9], computational reproducibility demands meticulous
management of workflows, configurations, and performance data.

Managing the increasing scale and complexity of scientific work-
flows requires advanced tools capable of automating and tracking
numerous computational tasks simultaneously. Researchers fre-
quently face difficulties in reliably reproducing experiments due to
inconsistencies in execution environments, incomplete metadata
documentation, and lack of structured management practices. Such
challenges significantly hinder scientific transparency, verification,
and collaboration.

Containerization technologies have fundamentally transformed
computational research by offering consistent and portable exe-
cution environments. Containerization, particularly through tech-
nologies such as Docker [3] has enabled researchers to encapsulate
applications along with their dependencies, thereby simplifying
deployment across diverse systems and mitigating issues related to
software configuration. Moreover, existing systems like Galaxy [2]
and Nextflow [4] have made significant strides in automating scien-
tific workflows. While these advances facilitate reliable execution
of computational tasks and workflows, environments that enable
researchers to create and holistically manage complex computa-
tional experiments-comprising of multiple containerized tasks, rich
metadata capture, and reproducibility considerations-are needed.

SCHEMA lab1 addresses this gap by providing an open source
virtual laboratory that empowers researchers to create, manage,
and monitor containerized computational experiments with ease.
Building upon previous work [12], SCHEMA lab allows users to
submit and track the execution of both individual tasks and complex
workflows while capturing essential metadata for performance
analysis and reproducibility.

In this demonstration paper, we present the system architecture,
core functionalities, and implementation of SCHEMA lab, illustrat-
ing its potential for enhancing computational reproducibility and
experiment management.

2 BACKGROUND AND RELATEDWORK
Over the past decade, significant advances have been made in con-
tainer orchestration, workflow management, and reproducibility
practices within computational research. Many platforms—such
as Galaxy [2], Snakemake [8], and Nextflow [4]—have been devel-
oped to coordinate multi-step scientific workflows with varying
degrees of automation and user support. These systems excel in or-
chestrating interdependent tasks, yet researchers may benefit from
additional flexibility in managing diverse computational workloads,
particularly when systematically capturing detailed metadata to
enhance reproducibility and experiment documentation.

SCHEMA lab addresses this need by providing a flexible, light-
weight environment for managing containerized computational
tasks. It supports the rapid execution of standalone tasks—ideal for

1SCHEMA lab: https://github.com/athenarc/schema-lab,
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quick tests and prototyping—while also enabling users to dynami-
cally group tasks into larger experiments. When tasks are run as
part of a grouped experiment, SCHEMA lab aggregates detailed in-
formation on experiment configuration, performance metrics, and
resource consumption, thereby facilitating easier documentation
and reproducibility. In contrast, executing standalone tasks focuses
on rapid iteration and debugging.

Reproducibility remains a central theme in computational re-
search. Prior studies (e.g., Sandve et al. [10] and Peng [9]) have
underscored the importance of meticulously documenting com-
putational processes to enable the exact replication of results. In
this context, recent advances in data packaging standards—such
as the RO-Crate framework [11]—offer promising strategies for
encapsulating experimental data and metadata in a standardized,
shareable format.

By aligningwith established paradigms in containerization, work-
flow management, and reproducibility, SCHEMA lab is positioned
as a tool that not only executes tasks efficiently but also adapts
to the evolving needs of researchers—whether they require rapid
prototyping or comprehensive experiment management.

3 SYSTEM OVERVIEW
The architecture of SCHEMA lab is designed to provide a seamless
and flexible environment for managing containerized computa-
tional experiments. The system is divided into two primary compo-
nents: the SCHEMA lab front-end and the SCHEMA api back-end.
Together, these components enable researchers to submit, execute,
monitor, and manage containerized tasks and computational exper-
iments efficiently. The following subsections describe the overall
architecture, the front-end functionalities, the back-end services,
and the integration between these components.

3.1 High-Level Architecture
Our platform supports the submission and monitoring of container-
ized task execution requests. Its purpose is to act as a gateway
between users and the task execution environment, performing
necessary authentication and authorization checks, recording sub-
mitted task requests, and scheduling valid, authorized tasks for
execution via exposed RESTful endpoints.

Under the hood SCHEMA api works over a Kubernetes cluster
that runs tasks shipped in Docker containers. Rather than com-
municating directly with Kubernetes, SCHEMA api schedules task
executions through TESK—an implementation of the Task Execu-
tion Service (TES) API [6] developed under the Global Alliance for
Genomics and Health (GA4GH) [7]. Consequently, SCHEMA api
requires an operational deployment of TESK [5] that is accessible
via HTTP.

On the front-end, SCHEMA lab communicates with SCHEMA api
using RESTful calls, ensuring that user actions (such as task or work-
flow submission and experiment creation) are reliably forwarded
to the back-end. The resulting execution status and metadata are
then pushed back to SCHEMA lab, enabling real-time monitoring
and control of computations.

A high-level diagram of this architecture and its dependencies is
depicted in Figure 1. In essence, SCHEMA api preserves the logical

abstraction of tasks, contexts, and experiments, while TESK handles
the low-level container scheduling on Kubernetes.

Figure 1: High-Level Architecture of SCHEMA api. This dia-
gram illustrates how SCHEMA api acts as a gateway between
users and the containerized execution environment by per-
forming authentication, scheduling containerized tasks via
TESK, and providing monitoring endpoints.

3.2 Back-End: SCHEMA api
SCHEMA api is the engine that powers the admission and schedul-
ing of containerized tasks. At its core, it is designed to orchestrate
the execution of containerized software, available in any reachable
registry, as well as passing to the execution input files and storing
produced output files. Within the SCHEMA api ecosystem, several
resources are used to achieve this functionality:

• Tasks: single-job containerized executions
• Workflows:multi-job containerized executions with known
intra-job dependencies

• Contexts: sets of executions which can be ran by certain
users with certain quotas

• Quotas: optional numerical limits that control the submitted
executions

• Experiments: sets of selected executions that are grouped
together and represent a computational effort

SCHEMA api is organized into several components: the API, the
execution manager, the quotas manager, the experiments manager
and the files adapter. Furthermore, it uses these components in
order to manage external systems and data stores like the execution
backend, a relational database and a files storage holding the files and
directories used for input and output in containerized computations.
This architecture is depicted in Figure 2.

3.2.1 Execution manager. The execution manager materializes the
core functionality of managing submitted workflows in SCHEMA
api. When a new execution request is submitted, it performs pre-
liminary steps like generating necessary execution metadata or
resolving workflow job execution order. Moreover, it evaluates the
effective quotas based on the submitting user and the execution
context. If the execution can run, based on the current context
and user resource utilization, it stores execution information in



A Virtual Laboratory for Managing Computational Experiments , ,

Figure 2: Internal architecture of SCHEMA-api

the database and finally schedules the execution on a supported
execution backend.

While SCHEMA api is designed to be easily extended for multiple
execution backends, in its production deployment it talks directly
to TESK, which implements the TES API. In fact, SCHEMA api is
inspired by TES API in the way it represents task and workflow data
for the data schema and the communication with TESK. In essence,
each task or workflow consists is described with the following core
entities, which are also illustrated in Figure 3:

• Task/Workflow: The primary execution entity, which ag-
gregates the configuration for that corresponds to a task or
workflow.

• Executors: Each execution can have multiple executors,
each corresponding to a single containerized job. This allows
complex computations across multiple containerized images.

• Environment Variables: Executors can be configured with
environment variables that are applied in their respective
containers.

• Input/Output Mount Points: Mappings that move files
into the container for the first executor and pull files from
the container of the last executor.

• Volumes: Shared directories accessible by all executors, fa-
cilitating data sharing between different stages of a multi-job
(workflow) execution.

3.2.2 Quotas manager. In order to control the execution footprint
on resources and fair sharing, SCHEMA api allows for the defini-
tion of quotas that enforce limits on user and context resources.
These quotas are stored in the database and may be evaluated at
different places in an execution’s life-cycle. The quotas manager is
responsible for managing these limits and computing the effective
quotas for any new execution.

Figure 3: Overview of an indicative workflow with one input,
two outputs and three volumes

3.2.3 Experiment manager. The experiment manager allows users
to create experiments that represent a computation effort. Addi-
tional users can be added in the experiment that are already co-
participants with the experiment creator in an execution context.
Tasks and workflow executions ran within the same execution con-
text, by experiment participants, can then be associated with the
created experiment.

3.2.4 Files adapter. The files adapter communicates with an exter-
nal S3 instance and manages the input and output files for each user,
which are stored in separate user buckets. It can carry out basic file
management operations like renaming/moving a file, deleting a file,
listing directory contents, and retrieving file metadata. Moreover, it
issues download and upload URLs that can be given back to users
for access to their bucket storage.

3.2.5 API. The API component is responsible for exposing REST
API endpoints for the management of the rest of the components.
Incoming requests reaching the API are initially passed through
an authorization mechanism that restricts access to users possess-
ing an active API key. Authorized requests are then routed to the
corresponding component, based on the requested API path. These
handlers carry out data validation on the input data, trigger the nec-
essary actions on the underlying components and finally respond
to the received requests.

API endpoints can be organized into groups that correspond to
actions over the resources introduced in Section 3.2. The tasks end-
point group handles the submission and management of single-job
containerized tasks.Workflows can be encodedwith a native format,
as described in Appendix A, and can be managed by similar API
endpoints. Moreover, in the context of reproducibility, SCHEMA
api exposes endpoints that allow users to manage experiments.
Finally, there are auxiliary operations for file management. The
endpoints for the above groups are further described in Appendix B.
Additional technical details—including API specification, deploy-
ment instructions, and configuration guidelines—are provided in
the SCHEMA api documentation.2

3.3 Integration and Data Flow
The integration between SCHEMA lab and SCHEMA api is de-
signed to ensure reliable, real-time communication and efficient

2API specification: https://schema.athenarc.gr/docs/schema-api/spec,
Deployment instructions: https://schema.athenarc.gr/docs/schema-api/deployment,
Configuration guidelines: https://schema.athenarc.gr/docs/schema-api/deployment/c
onfig

https://schema.athenarc.gr/docs/schema-api/spec
https://schema.athenarc.gr/docs/schema-api/deployment
https://schema.athenarc.gr/docs/schema-api/deployment/config
https://schema.athenarc.gr/docs/schema-api/deployment/config
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handling of computational tasks. The data flow encompasses sev-
eral key stages that enable seamless interaction and comprehensive
experiment management.

The process begins with task submission. A user initiates a
new task via the SCHEMA lab interface, which triggers a RESTful
request to SCHEMA api. Depending on the nature of the task, this
may involve a POST /api/tasks request for standalone tasks or
a POST /api/workflows request for grouped tasks that involve
multiple dependent executions.

Upon receiving the submission, SCHEMAapi handles task sched-
uling and execution. The API validates the request and stores it
in a structured data store to maintain a record of the configuration
and metadata. Once recorded, the task is scheduled for execution
through TESK, which interfaces directly with a Kubernetes cluster.
TESK manages the actual deployment of the containerized jobs,
while SCHEMA api captures the initial status information and com-
municates it back to the front end, allowing users to monitor the
progress of their tasks in real time.

Throughout execution, SCHEMA lab supports status monitor-
ing and data aggregation. The front end periodically queries
SCHEMA api (e.g., via GET /api/tasks/{uuid}) to fetch the latest
status updates.

The system also incorporates error handling and feedback
mechanisms. If execution errors occur or if a user triggers task can-
cellation through the POST /api/tasks/{uuid}/cancel endpoint,
SCHEMA api provides logs for these events to the front end. Users
receive detailed error messages facilitating rapid troubleshooting
of failed executions.

Looking ahead, SCHEMA lab is designed with extensibility in
mind. A planned enhancement is the integration of RO-Crate ex-
port functionality, which will allow experiments to be packaged
with standardized data and metadata descriptions. This feature aims
to further strengthen reproducibility and enable easier sharing and
publication of computational experiments.

Overall, each stage of the workflow is supported by RESTful
communication patterns and robust error-handling mechanisms.
This design ensures that SCHEMA lab delivers a seamless user
experience, even under complex computational loads and multi-
tasking scenarios.

3.4 Front-End: SCHEMA lab
The SCHEMA lab front-end provides an intuitive interface for users
to interact with the system. Its main features include:

• Task Submission and Monitoring: Users can submit both
standalone single containerized tasks and workflow tasks.
Users can view all submitted tasks along with their unique
identifiers, execution status, submission time, and last up-
date timestamp. Figure 4 illustrates the task management
interface in SCHEMA lab. The interface presents task exe-
cution details in a tabular format, with clear indicators for
different statuses such as Approved, Running, Completed,
Scheduled, and Error. The rightmost column includes inter-
active buttons that allow users to cancel or re-execute a task
if necessary.

Figure 4: Task Management Interface in SCHEMA lab. Users
can view and manage submitted tasks, track their statuses,
and perform actions such as canceling or resubmitting exe-
cutions.

• ExperimentManagement:The interface supports the group-
ing of executed single tasks or workflow tasks into experi-
ments using interactive elements such as check-boxes. Users
can create, update, and delete experiments, as well as review
all the experiments they have created in a context. The UI
provides a simple way to select completed tasks and create
an experiment, as illustrated in Figure 5.

Figure 5: SCHEMA lab interface for creating an experiment
by selecting executed tasks.

4 AVAILABILITY & RESOURCES
SCHEMA lab and SCHEMA api are designed as open platforms to
support containerized task and workflow execution and manage-
ment and experiment creation. To facilitate adoption, development,
and integration, we provide the following resources:

• GitHub Repositories: The source code for both SCHEMA
api and SCHEMA lab is openly available for contributions
and issue tracking:
– SCHEMA api: https://github.com/athenarc/schema-
api/tree/main

https://github.com/athenarc/schema-api/tree/main
https://github.com/athenarc/schema-api/tree/main
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– SCHEMA lab: https://github.com/athenarc/schema-lab
• Swagger API Documentation: Developers can explore the
SCHEMA api endpoints and test API calls via the Swagger
UI, available at https://api.hypatia-comp.athenarc.gr/.

• Code and User Documentation: The code and user doc-
umentation, including API specifications and deployment
guides, is actively maintained and can be accessed at https:
//schema.athenarc.gr. This resource is continuously evolving
to reflect the latest developments.

5 DEMONSTRATION SCENARIOS
During the demonstration session, we will showcase SCHEMA lab’s
functionalities using a deployment on the HYPATIA Cloud Infras-
tructure3, which leverages a large computational cluster. Specifi-
cally, we will illustrate SCHEMA lab’s capabilities interactively by
addressing scenarios defined in real-time by the audience. Addi-
tionally, we have prepared several illustrative scenarios designed
to highlight key aspects and strengths of the platform:

Scenario 1: Submitting and Monitoring Individual Tasks. In this
scenario, we will demonstrate how users can quickly submit individ-
ual tasks and monitor their execution through SCHEMA lab. Users
will see how tasks are submitted, their progress tracked in real-
time, and outputs retrieved seamlessly via the platform’s intuitive
interface.

Scenario 2: Defining and Executing Workflows. We will present
SCHEMA lab’s workflow orchestration capabilities, highlighting
how users can define, execute, and monitor workflows consisting of
multiple containerized tasks with interdependencies. This demon-
stration will illustrate the workflow creation process, execution
monitoring, and management of dependencies within SCHEMA
lab.

Scenario 3: Creating Computational Experiments with Multiple
Tasks or Workflows. This scenario will demonstrate the platform’s
functionality for creating comprehensive computational experi-
ments by selecting and combining multiple tasks or workflows.
Attendees will have the opportunity to explore the system hands-
on and test any scenario of their choice.

6 CONCLUSION
SCHEMA lab, powered by SCHEMA api, provides a comprehensive
and user-friendly platform for executing and managing container-
ized computational tasks. Designed to address the complexities of
scientific experiments, it enables users to submit, monitor, and man-
age both individual containerized tasks and workflows efficiently.
Through its integration with TESK and Kubernetes, the system
supports scalable, distributed execution while maintaining a high
level of control and reproducibility.

One of the key contributions of SCHEMA lab is its ability to
bridge the gap between containerized task execution and struc-
tured experiment management. Unlike traditional workflow en-
gines, SCHEMA lab not only supports individual executions but
also allows users to group multiple executions into experiments,
providing a higher-level abstraction for computational research.

3https://hypatia.athenarc.gr/

This design enhances the traceability and reproducibility of scien-
tific computations, making it easier for researchers to document,
share, and verify their results. The system also offers a web-based
interface that simplifies interaction for users, providing an intuitive
way to manage and inspect tasks without requiring deep technical
expertise.

Moreover, the SCHEMA api backend offers a modular and ex-
tensible architecture through secure RESTful endpoints for task,
workflow, and experiment management. This design fosters in-
teroperability, facilitating future integration with other scientific
computing platforms.

To further enhance the capabilities of SCHEMA lab and SCHEMA
api, several future developments are planned. First, we intend
to integrate support for additional workflow languages—such as
Nextflow, enabling users to leverage advanced workflow paradigms
and tap into the rich ecosystem of existing scientific workflow
tools. Secondly, we plan to implement RO-Crate export function-
ality, which will allow experiments to be packaged in a standard-
ized, lightweight format that encapsulates both data and metadata,
thereby facilitating reproducibility and data sharing across plat-
forms. For this purpose we plan to use a custom RO-Crate profile
focused in performance metadata [1]. Finally, we plan to establish
integrations with external repositories, such as RO-Hub, and Work-
flow Hub. connecting with Workflow Hub to streamline the sharing
and reuse of computational workflows

This demonstration has showcased how SCHEMA lab simplifies
the orchestration of containerized tasks and workflows, making
it an invaluable tool for researchers and organizations managing
computational experiments. By prioritizing usability, scalability,
and reproducibility, SCHEMA lab stands as a versatile and forward-
thinking solution for modern scientific computing challenges.
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APPENDIX A: NATIVE WORKFLOW
SPECIFICATION
SCHEMA api supports declarative workflows that are defined in
a specific format. It introduces a native workflow specification
that directly maps to internal data structures and can be easily
serialized to JSON format. Although this specification is based
on the task structure described in Section 3.2.1, it uses certain
additional parameters that describe executor file dependencies and
allow the resolution of the order of execution.

SCHEMA api enables the prospective integration of additional
workflow languages by utilizing its native workflow specification.
Extensions of SCHEMA api, aiming to support standard workflow
languages, are planned to implement the necessary transpilation
processes that generate the respective native workflow definitions.
This allows internal SCHEMA api components, like the execution
manager to handle any workflow, regardless of its language. There-
fore, SCHEMA api remains flexible by allowing the scheduling of
the workflow execution to use either the original workflow lan-
guage or the corresponding native definition.

Additional information regarding the support of workflows in
SCHEMA api can be found at https://schema.athenarc.gr/docs/sc
hema-api/arch/workflows.

APPENDIX B: SCHEMA API ENDPOINTS
Task Endpoints

• POST /api/tasks: Submit a new task execution request.
• GET /api/tasks: Retrieve a list of submitted tasks.
• GET /api/tasks/{uuid}: Get detailed information about a
specific task.

• POST /api/tasks/{uuid}/cancel: Cancel an ongoing task.
• GET /api/tasks/{uuid}/stdout: Retrieve the standard
output of a task.

• GET /api/tasks/{uuid}/stderr: Retrieve the standard er-
ror of a task.

• GET /api/quotas: Retrieve applied quotas for a user within
a project.

Workflow Endpoints
• POST /api/workflows: Submit a new workflow.
• GET /api/workflows: List submitted workflows.
• GET /api/workflows/{uuid}: Retrieve data of a specific
workflow.

• POST /api/workflows/{uuid}/cancel: Cancel a running
workflow.

• GET /api/workflows/{uuid}/stdout: Retrieve stdout of
executed workflow jobs.

• GET /api/workflows/{uuid}/stderr: Retrieve stderr of
executed workflow jobs.

Experiment Endpoints
• GET /reproducibility/experiments: List all
experiments.

• POST /reproducibility/experiments: Create a new
experiment.

• GET
/reproducibility/experiments/{username}/{name}:
Retrieve details of a specific experiment.

• PATCH
/reproducibility/experiments/{username}/{name}:
Update an experiment.

• DELETE
/reproducibility/experiments/{username}/{name}:
Delete an experiment.

• GET /reproducibility/experiments/{username}/
{name}/tasks: Retrieve tasks associated with an
experiment.

• PUT /reproducibility/experiments/{username}/
{name}/tasks: Assign tasks to an experiment.

Storage Endpoints
• GET /storage/files: List the files in the user’s bucket.
• POST /storage/files: Issue an upload link for a specific
object.

• GET /storage/files/{PATH}: Retrieve metadata or down-
load link for a file.

• PATCH /storage/files/{PATH}: Move or rename an object
in the user’s bucket.

• DELETE /storage/files/{PATH}: Delete an object from
the user’s bucket.
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