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Sound causal inference is crucial for advancing the study of science. Incorrectly interpreting predictive effects
as causal might be ineffective or even detrimental to policy recommendations. Many publications in science
studies lack appropriate methods to substantiate their causal claims. We here provide an introduction to
structural causal models. Such models, usually represented in a graphical form, allow researchers to make
their causal assumptions transparent and provide a foundation for causal inference. We illustrate how to
use structural causal models to conduct causal inference using regression models based on simulated data of
a hypothetical structural causal model of Open Science. The graphical representation of structural causal
models allows researchers to clearly communicate their assumptions and findings, thereby fostering further
discussion. We hope our introduction helps more researchers in science studies to consider causality explicitly.
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I. INTRODUCTION

Causal questions are pervasive in science studies: what
are the effects of peer review on the quality of publica-
tions (Goodman et al., 1994)? What is the influence of
mentorship on protegees success (Malmgren, Ottino, and
Nunes Amaral, 2010)? Do incentives to share research
data lead to higher rates of data sharing (Woods and Pin-
field, 2022)? Yet, answers to such questions are rarely
causal. Often, researchers investigate causal questions,
but fail to employ adequate methods to make causal
claims. As an example, there is a burgeoning literature
investigating whether publishing Open Access leads to
more citations. While the observational evidence seems
to suggest such an effect, few studies use methods that
would permit causal claims (Klebel et al., 2023). Most sci-
entists acknowledge that we should be “thinking clearly
about correlation and causation” (Rohrer, 2018), but the
implications of causal considerations are often ignored.
Similar concerns were raised in the context of biases in
science, such as gender bias (Traag and Waltman, 2022).

Uncovering causal effects is a challenge shared by many
scientific fields. There are large methodological differ-
ences between fields, also with regards to inferring causal-
ity. Some fields are experimental, while others are obser-
vational. Some are historical, examining a single history,
while others are contemporary, where observations can
be repeated. Some fields already have a long tradition
with causal inference, while other fields have paid less at-
tention to causal inference. We believe that science stud-
ies, regardless of whether that is scientometrics, science
of science, science and technology studies, or sociology of
science, have paid relatively little attention to questions
of causality, with some notable exceptions (e.g., Aagaard
and Schneider, 2017; Gläser and Laudel, 2016).

We here provide an introduction to causal inference
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for science studies. Multiple introductions to structural
causal modelling of varying complexity already exist
(Rohrer, 2018; Arif and MacNeil, 2023; Elwert, 2013).
Dong et al. (2022) introduce matching strategies to infor-
mation science. We believe it is beneficial to introduce
causal thinking using familiar examples from science stud-
ies, making it easier for researchers in this area to learn
about causal approaches. We avoid technicalities, so that
the core ideas can be understood even with little back-
ground in statistics.

A. The fundamental problem

The fundamental problem in causal inference is that
we never have the answer to the “what-if” question. For
instance, suppose that a professor received tenure. We
can observe her publications when she received tenure.
Would she also have received tenure, if she had not pub-
lished that one paper in a high-impact journal? We can-
not simply observe the answer, since that situation did
not materialize: she in fact did publish that paper in a
high-impact journal, and in fact did receive tenure. The
so-called counterfactual scenario, where she did not pub-
lish that paper and received tenure (or not), is unobserv-
able. This unobservable counterfactual scenario is the
fundamental problem.

Experiments are often helpful in getting causal an-
swers. By controlling the exact conditions, and only
actively varying one condition, we can recreate counter-
factual scenarios, at least on average, assuming condi-
tions are properly randomised. There are also some ex-
perimental studies in science studies, for instance study-
ing the effect of randomly tweeting about a paper or
not (Luc et al., 2021; Davis, 2020), making papers ran-
domly openly available (Davis et al., 2008), or studying
affiliation effects by experimentally comparing double-
anonymous peer review with single-anonymous peer re-
view (Tomkins, Zhang, and Heavlin, 2017). However,
there are many questions that do not allow for an ex-
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perimental setup. For example, randomising scholars’
career age or research field is impossible. But even in
experimental settings there are limitations to causal in-
ference. For instance, non-compliance in experimental
settings might present difficulties (Balke and Pearl, 2012),
such as certain types of reviewers being more likely to try
to identify authors in a double-anonymous peer review ex-
periment. Additionally, scholars might be interested in
identifying mediating factors when running experiments,
which further complicates identifying causality (Rohrer
et al., 2022). In other words, causal inference presents a
continuum of challenges, where experimental settings are
typically easiest for identifying causal effects—but cer-
tainly no panacea—and observational settings are more
challenging—but certainly not impossible.

In this paper we introduce a particular view on causal
inference, namely that of structural causal models (Pearl,
2009). This is a relatively straightforward approach to
causal inference with a clear visual representation of
causality. It should allow researchers to reason and dis-
cuss about their causal thinking more easily. In the next
section, we explain structural causal models in more de-
tail. We then cover some case studies based on simulated
data to illustrate how causal estimates can be obtained in
practice. We close with a broader discussion on causality.

II. CAUSAL INFERENCE - A BRIEF INTRODUCTION

Structural causal models focus, as the name suggests,
on the structure of causality, not on the exact details.
That is, structural causal models are only concerned with
whether a certain factor is causally affected by another
factor, not whether that effect is linear, exponential, or
an “interaction” with some other effects. Such structural
models can be represented by simple causal diagrams.
This graphical approach makes it relatively easy to dis-
cuss about causal models and assumptions, because it
does not necessarily involve complicated mathematics.

Sometimes, assumptions about specific functional de-
pendencies can be made, and this might help causal in-
ference. For instance, a well-known general causal infer-
ence strategy is called “difference-in-difference”. A key
assumption in that strategy is something called “parallel
trends”. Not having to deal with such details simplifies
the approach and makes it easier to understand the core
concepts. But sometimes it also simplifies too much. We
can always make stronger assumptions, and sometimes,
these stronger assumptions allow us to draw stronger con-
clusions. But without assumptions, we cannot conclude
anything.

The overall approach to causal inference using struc-
tural causal models would be the following:

1. Assume a certain structural causal model.
2. Use the assumed structural causal to understand

how to identify causal effects.
3. Identified effects can be interpreted causally under

the assumed structural causal model.

Whatever structural causal model we construct, it will
always be an assumption. Constructing such a structural
causal model can be based on domain expertise and prior
literature in the area. Whether a structural causal is re-
alistic or not might be debated. This is a good thing,
because by making causal assumptions explicit, we can
clarify the discussion, and perhaps advance our common
understanding. We cannot always use empirical observa-
tions to discern between different structural causal mod-
els. That is, different structural causal models can have
the same observable implications, and so no observations
would help discern between them. However, there might
also be observable implications that do differ between
different structural causal models. We can then put the
two (or more) proposed theoretical structural causal mod-
els to the test, using empirical evidence to decide which
structural causal model is incorrect. Note the empha-
sis on incorrect: we cannot say that a structural causal
model is correct, but we can say that a structural causal
model is incorrect, if it is inconsistent with the observa-
tions. In summary, if we propose a certain structural
causal model to try to identify a causal effect, we should
make sure that its observable implications are at least
consistent with the empirical evidence we have.

Nonetheless, any structural causal model always re-
mains a simplification of reality, and is usually designed
for a specific causal question. For example, a structural
causal model of the entire academic system, containing
each and every detail about potential effects, is overly
detailed and likely not useful for the majority of empiri-
cal studies. For most studies, a simpler structural causal
model is probably more productive. In some cases, prob-
lems of causal identification might emerge in simple struc-
tural causal models, and are not heavily dependent on
specific details. That is, adding more nuance to a struc-
tural causal model will not necessarily solve a problem
that was identified in a simpler structural causal model.
However, sometimes problems might only become appar-
ent with more complex structural causal models, and ad-
ditional nuance might reveal that identifying a causal
effect is more challenging. We encounter and discuss this
in some examples later.

The main challenge then is to use a given structural
causal model to identify a causal effect: what factors
should be controlled for and, equally important, what
factors should not be controlled for? We introduce an
answer to that question in the next subsection. The in-
troduction we provide here only covers the basics. We
explicitly provide an introduction that is as simple as
possible, in order to be understandable to a broad au-
dience. Our introduction covers many typical situations
that can be encountered, but there are other cases that
cannot be understood without using a more formal logic
known as do-calculus (Pearl, 2009). Beyond existing in-
troductions to causal inference, typically covering specific
fields (Rohrer, 2018; Arif and MacNeil, 2023; Hüner-
mund and Bareinboim, 2023; Deffner, Rohrer, and McEl-
reath, 2022), there are also comprehensive text-books
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Figure 1. Hypothetical structural causal model on Open Sci-
ence

(Huntington-Klein, 2021; Cunningham, 2021; Pearl,
2009), that provide much more detail and explanation
than we can provide here.

To provide an introduction useful to readers and schol-
ars in science studies, we consider the case of Open
Science, a movement and practice of making research
processes more transparent (Fecher and Friesike, 2014).
Many studies have been conducted on the potential im-
pacts Open Science might have on academia, society, and
the economy (Klebel et al., 2023; Tennant et al., 2016).
However, studies on specific types of Open Science im-
pact, such as those on the Open Access citation advan-
tage, often lack a clear understanding of causal pathways
and thus fail to develop a meaningful strategy for estimat-
ing causal effects. Our introduction shows how causal in-
ference could be leveraged to improve these and similar
studies.

A. Introducing DAGs

It is convenient to represent a structural causal model
using a directed acyclic graph (DAG). A DAG is a di-
rected graph (sometimes called a network) where the
nodes (sometimes called vertices) represent variables, and
the links (sometimes called edges) represent causal effects.
A DAG is acyclic, meaning that there cannot be directed
cycles, so that if 𝑋 → 𝑍 → 𝑌 , there cannot be a link
𝑌 → 𝑋 (or 𝑌 → 𝑍 or 𝑍 → 𝑋). If there is a 𝑋 → 𝑌 ,
it means that 𝑌 directly depends on 𝑋, that is, 𝑌 is a
function of 𝑋. We do not specify what function exactly,
so it can be a linear function, an exponential function, or
any complicated type of function. Interactions between
variables, moderators, hurdles, or any other type of func-
tional specification are not indicated separately, and all
can be part of the function.

The variables that influence 𝑌 directly, i.e. for which

there is a link from that variable to 𝑌 , are called the par-
ents of 𝑌 . If any of the parents of 𝑌 change, 𝑌 will also
change1. If any parents of the parents change, i.e. vari-
ables that are further upstream, 𝑌 will also change.
Hence, if there are any paths from 𝑋 to 𝑌 , possibly
through other variables 𝑍, i.e. 𝑋 → 𝑍 → 𝑌 , the vari-
able 𝑋 has a causal effect on 𝑌 .

Throughout this introduction, we work with a single
example DAG on Open Science (see Figure 1). In this
DAG, Novelty and Rigour are both assumed to affect the
number of Citations and whether something will be Pub-
lished or not. Here, we use Published to refer to a jour-
nal publication, but research can also be made available
in different ways, for example as preprints or working
papers. Preprints or working papers can also be con-
sidered published, but for the sake of simplicity we use
the term Published to refer to journal publications only.
Unlike Novelty, Rigour influences whether data is made
available openly: scholars that are doing more rigorous
research may be more likely to share their data openly.
Unlike Rigour, Novelty affects Data reuse; data from a
rigorous study that did not introduce anything new may
be less likely to be reused by other researchers. If data is
reused, the original study might be cited again, so Data
reuse is assumed to affect Citations. In some cases, Open
data will be mandated by a journal, and so whether some-
thing will be Published may also depend on Open data.
Whether something is Reproducible is assumed to be af-
fected by the Rigour of the study, and also by Open data
itself: studies that share data might lead scholars to dou-
ble check all their results to make sure they align exactly
with the shared data. Finally, Citations are also influ-
enced by the Field of study (some fields are more citation
intensive), as is Open data (data sharing culture is not
the same across fields).

As explained earlier, this DAG is a simplification, and
we can debate whether it should be changed in some
way. However, the DAG is consistent with most results
from the literature, although there is typically also dis-
agreement within the literature itself. This DAG is con-
structed without one particular causal question in mind.
Instead, we illustrate all the necessary concepts using this

1 Depending on the functional specification, 𝑌 might only change
in specific circumstances. For example, suppose our functional
specification includes a hurdle, such that

𝑌 = 𝑓(𝑋, 𝑍) = {0 if 0 < 𝑋 < 5,
𝑍2 if 𝑋 ≥ 5.

In this case, only a change in 𝑋 that crosses the threshold of 5
results in a change in 𝑌 ; anything else will not change 𝑌 . A more
precise formulation therefore is that if 𝑋 is not a parent of 𝑌 (nor
a further ancestor) then changes in 𝑋 never lead to changes in
𝑌 . This also makes clear that leaving out a link in a DAG is a
stronger assumption than keeping a link in. A link that is present
in a DAG indicates that there might be some dependency. A link
that is absent indicates that there is no (direct) dependency at
all.
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example, and use this DAG for multiple possible causal
questions. For a particular study, it might be best to
construct a particular DAG for the specific causal ques-
tion. A reasonable starting point for constructing a DAG
for a particular causal question of 𝑋 on 𝑌 might be the
following: (1) consider all factors that affect and are af-
fected by 𝑋 and/or 𝑌 ; (2) consider how these factors are
causally related between each other. There might be ad-
ditional relevant considerations, but it should provide a
reasonable simplification to start with.

A useful tool for working with DAGs is called dagitty,
which is available from the website http://dagitty.net,
which also contains many useful pointers to additional
introductions and tutorials.

B. Using DAGs to identify causal effects

Most scholars will be acquainted with problems of con-
founding effects, and that we somehow need to “control”
for confounding effects. But there are also other fac-
tors besides confounders. Most scholars will also be ac-
quainted with mediating factors, i.e. mediators. Fewer
scholars will be acquainted with colliding factors, i.e. col-
liders. Controlling for a collider often leads to incorrect
causal inferences. Hence, the question of what variables
to control for is more complicated than just controlling
for confounders. In particular, colliders raise the ques-
tion what we should not control for. In this section, we
use DAGs to understand which factors we should control
for, and which factors we should not control for.

We are interested in the causal effect of one variable
𝑋 on another variable 𝑌 . As the popular adage goes,
correlation does not imply causation. That is, 𝑋 and 𝑌
might be correlated, even if 𝑋 does not affect 𝑌 . For
instance, in Figure 1 Reproducibility and Published are
correlated because both are affected by Open data, but
Reproducibility does not have any causal effect on Pub-
lished or vice versa.

1. Paths in DAGs

In DAGs, we think of correlation and causation in
terms of paths between variables. In a graph, a path be-
tween two nodes consists of a series of connected nodes.
That is, we can move from one node to another across
the links between the nodes to reach another part of the
graph. For example, in Figure 1 we can move from Nov-
elty to Data reuse to Citations. In this example, the path
follows the direction of the links. Paths that follow the
direction of the links resemble the flow of causality, and
we refer to them as causal paths. That is, Novelty affects
Data reuse, which in turn affects Citations. This is an
indirect causal effect of Novelty on Citations, mediated
by Data reuse. There is another indirect causal effect
of Novelty on Citations, mediated by Published. In addi-
tion, there is also a link directly from Novelty to Citations,

Figure 2. Overview of open and closed nodes. Open nodes
are marked in green, closed nodes are marked in orange.

which represents a direct causal effect. The combination
of the two indirect effects and the direct effect is known
as the total causal effect.

In addition, there are also paths that do not follow
the direction of the links. This can be most easily done
by simply ignoring the directions, and also allowing to
traverse links upstream, so to speak. There is then a path
between Open data and Citations through Field. There is
not a single direction that we follow, and the path looks
like Open data ← Field → Citations. Paths that do not
follow a single direction do not represent a causal effect,
and we refer to them as non-causal paths.

The key insight is that two variables that are connected
through certain paths are correlated, even if they are not
connected through any causal paths. We discern two
types of paths. One type of path, through which two
variables are correlated, is called an open path. Another
type of path, through which two variables are not corre-
lated, is called a closed path. If there are no open paths
between two variables, the two are not correlated. Both
causal paths and non-causal paths can be open or closed.
Indeed, if there is a non-causal path that is open, two
variables are correlated, but this “correlation does not
imply causation”.

Formalising this slightly, two variables 𝑋 and 𝑌 are
correlated if there is an open path between 𝑋 and 𝑌 . If
there are no open paths between 𝑋 and 𝑌 , they are not
correlated2. We can identify a causal effect of 𝑋 on 𝑌
by closing all non-causal paths between 𝑋 and 𝑌 and
by opening all causal paths from 𝑋 to 𝑌 . Whether a
path is open or closed depends on the types of variables
on a path, and whether those variables are conditioned
on. We explain this in more detail below, and provide a
visual summary of the explanation in Figure 2.

As explained, all paths between 𝑋 and 𝑌 need to be
considered, regardless of their direction. That is, 𝑋 →

2 In technical terms, two variables 𝑋 and 𝑌 that are not correlated
are said to be 𝑑-separated, sometimes denoted by 𝑋 ⟂ 𝑌 . Two
variables 𝑋 and 𝑌 that are correlated are said to be 𝑑-connected,
sometimes denoted by 𝑋⟂̸𝑌 . Whether two variables 𝑋 and 𝑌
are 𝑑-separated or 𝑑-connected depends on whether other vari-
ables 𝒵 = 𝑍1, 𝑍2, … are controlled for or not. If two variables 𝑋
and 𝑌 are 𝑑-separated, conditional on controlling for variables
𝒵, this is denoted as 𝑋 ⟂ 𝑌 ∣ 𝒵. We do not use this notation
here, but you might encounter the notation in other texts.

http://dagitty.net
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𝑍 → 𝑌 is a path that we should consider, but also 𝑋 ←
𝑍 → 𝑌 and 𝑋 → 𝑍 ← 𝑌 . Going back to the paths we
considered earlier: if we are interested in the causal effect
of Open data on Citations, there is a directed, causal path
from Open data to Data reuse to Citations, but there is
also a non-causal path between Open data and Citations
that runs through Field.3

We call a path open when all the nodes, i.e. variables,
on the path are open. If there is a single closed variable
on a path, the entire path is closed. You can think of
this as a sort of information flow: if all nodes are open,
information can flow through, but a single closed node
blocks the flow of information. We can change whether
a variable should be considered open or closed by con-
ditioning on it. By closing a variable, we can therefore
close a path. By opening a variable, we can potentially
open a path, unless the path is still closed by another
variable.

There are many ways in which we can condition on a
variable. A common approach in quantitative analysis is
to include such a variable in a regression analysis. But
another way is to analyse effects separately for various
categories of some variable. For example, we can condi-
tion on Field by performing an analysis for each field sep-
arately. This can be thought of as comparing cases only
within these categories. Other approaches include for ex-
ample so-called matching procedures. When matching
cases on a certain variable, we only compare cases which
are the same (or similar) on that variable. Finally, in sci-
ence studies, indicators are frequently “normalised”, es-
pecially citation indicators (Waltman and van Eck, 2019),
which amounts to conditioning on the variables used for
the normalisation.

2. Confounders, colliders and mediators

We can discern three types of variables: a confounder,
a collider and a mediator. Whether a variable 𝑍 is a
confounder, a collider or a mediator depends on how 𝑍
is connected on a path between 𝑋 and 𝑌 . Below we
consider each type of variable in more detail.

The first type of variable that we consider is a con-
founder. A confounder 𝑍 is always connected like 𝑋 ←
𝑍 → 𝑌 . Here 𝑍 is the common cause for both 𝑋 and
𝑌 . A confounder is open when not conditioned on. If
we condition on a confounder, it is closed. Usually, we
want to close paths with confounders, as the paths do not
represent a causal effect. For example, in Figure 1, Field
plays the role of a confounder on the path between Open
data and Citations. That path is open; we can close it by
conditioning on Field.

3 Note that there are many additional paths in this example: Open
data ← Rigour → Citations, Open data → Reproducibility ←
Rigour → Citations, etc.

The second type of variable that we consider is a col-
lider. A collider 𝑍 is always connected like 𝑋 → 𝑍 ← 𝑌 .
Here 𝑍 is affected by both 𝑋 and 𝑌 . A collider is closed
when not conditioned on. If we condition on a collider, it
is opened. Usually, we want to keep paths with a collider
closed, as the paths do not represent a causal effect. For
example, in Figure 1, Published plays the role of a collider
on the path between Rigour and Novelty. That path is
closed; we can open it by conditioning on Published.

Finally, the third type of variable that we consider
is a mediator. A mediator 𝑍 is always connected like
𝑋 → 𝑍 → 𝑌 . Here, 𝑍 is affected by 𝑋 and in turn 𝑍
affects 𝑌 . Indirectly, namely through 𝑍, 𝑋 affects 𝑌 . A
mediator is open when not conditioned on. If we con-
dition on a mediator, it is closed. Usually, we want to
keep paths with mediators open, as the paths represent a
causal effect. However, it might be that we are interested
in the direct effect of 𝑋 on 𝑌 , instead of the total effect
of 𝑋 on 𝑌 . By controlling for a mediator 𝑍 we can close
the indirect path 𝑋 → 𝑍 → 𝑌 , and estimate the direct
path 𝑋 → 𝑌 (assuming there are no other indirect paths
left). For example, in Figure 1, Open data is a mediator
between Rigour and Reproducibility. That path is open;
we can close it by conditioning on Open data. This is
relevant if we try to identify the direct causal effect of
Rigour on Reproducibility.

Note that the same variable can play different roles
in different paths. For example, in Figure 1, Open data
plays the role of a confounder in the path Reproducibility
← Open data → Data Reuse → Citations. At the same
time, Open data plays the role of a collider in the path
Reproducibility ← Rigour → Open data ← Field → Ci-
tations. The former path is open, while the latter path
is closed. If we are interested in the causal effect, both
paths should be closed, since neither represents a causal
effect. However, if we condition on Open data, we close
the path where Open data is a confounder, while we open
the path where Open data is a collider. Hence, we can-
not close both paths by conditioning on Open data. If we
cannot condition on other variables, for example because
we did not collect such variables for a study, we have no
way of identifying the causal effect4 of Reproducibility on
Citations.

III. CASE STUDIES

In this section, we apply the concepts introduced above
to potential research questions, demonstrating how to es-
timate causal effects. We show how a researcher can use

4 In this case, our assumed DAG implies that there should be no
causal effect of Reproducibility on Citations. If we condition on
Open data and Rigour all non-causal paths are closed, meaning
that we then expect to find no correlation. If, in contrast, we still
find a non-zero correlation after conditioning on Open data and
Rigour, it means our DAG is incorrect, and we need to revise it.
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a hypothesised causal model of the phenomenon under
study to estimate causal effects. We use the DAG in-
troduced earlier (Figure 1) to illustrate our estimation
strategies.

For the purposes of these hypothetical examples, we
simulate data according to the DAG in Figure 1. As ex-
plained, a DAG only specifies that a variable is affected
by another variable, but it does not specify how. For sim-
ulating data, we do need to specify the model in more
detail. In particular, we sample Field uniformly from
two fields; we sample Rigour and Novelty from standard
normal distributions (i.e. with a mean of 0 and a stan-
dard deviation of 1); we sample Open data and Published
from Bernoulli distributions (i.e. Yes or No); and we sam-
ple Data reuse, Reproducibility and Citations again from
standard normal distributions. The effects of some vari-
ables on other variables are represented by simple linear
equations (using a logistic specification for the Bernoulli
distributions), with particular coefficients for the effects
(see Table I). These distributions are not necessarily real-
istic. Yet, our aim is not to provide a realistic simulation,
but to illustrate how causal inference can be applied. Re-
lying on standard normal distributions and linear equa-
tions simplifies the simulation model and the analyses of
the simulated data.

Regression analysis is the common workhorse of quanti-
tative analysis, also in science studies. We use regression
analysis to illustrate how a researcher might analyse their
data to provide causal estimates5. Of course, more com-
plex analytical approaches, such as Bayesian models or
non-linear models can also be used. Such models might
have great scientific, philosophical, or practical benefits,
but they are certainly no prerequisite for sound causal
inference. Moreover, having complex models is no sub-
stitute for sound causal inference, and wrong causal con-
clusions can still be drawn from complex models. From
that point of view, using simpler methods while paying
proper attention to causality might be preferred over us-
ing complex methods while ignoring issues of causality.

Table I: Coefficients for simulated data

From To Coefficient
intercept open_data -3
rigour open_data 0.1
field open_data 1, 5
intercept published -1
novelty published 1
rigour published 2
open_data published 8
intercept data_reuse -1
open_data data_reuse 2
novelty data_reuse 1

5 We will write the equation in the typical style of R. For example,
𝑌 ∼ 𝑋 + 𝐴, refers to the linear equation 𝑌 = 𝛼 + 𝛽𝑋𝑋 + 𝛽𝐴𝐴,
where we are interested in estimating the coefficients 𝛼, 𝛽𝑋 and
𝛽𝐴.
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Figure 3. Effect of Rigour and Open data on Reproducibility

Table I: Coefficients for simulated data

From To Coefficient
intercept reproducibility 1
open_data reproducibility 0.4
rigour reproducibility 1
intercept citations -1
novelty citations 2
rigour citations 2
published citations 2
data_reuse citations 2
field citations 10, 20
sigma none 1

A. The effect of Rigour on Reproducibility

To provide a first impression of the simulated data, and
some intuition of how we can estimate causal effects, we
first analyse the effects of Rigour and Open data on Re-
producibility (see Figure 3). Rigour and Reproducibility
are clearly positively correlated: higher Rigour is associ-
ated with higher Reproducibility. We also see that the
overall level of reproducibility tends to be higher if there
is Open Data.

Following our model (Figure 1), Rigour and Open data
are the only variables influencing Reproducibility. Let us
consider the total causal effect of Rigour on Reproducibil-
ity. There are several paths between Rigour and Re-
producibility, some causal, some non-causal. The model
shows two causal paths: a direct effect Rigour → Re-
producibility and an indirect effect Rigour → Open data
→ Reproducibility, where the effect is mediated by Open
data. The non-causal paths are more convoluted: all run
through Citations and/or Published, with both variables
acting as colliders on these paths. The non-causal paths
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Figure 4. Effect of Rigour on Reproducibility, estimated with
a simple linear regression.

are hence all closed, unless we condition on any of the
colliders.

Since the causal paths are open, and the non-causal
paths are closed, we do not have to control for anything.
We can estimate the total causal effect of Rigour on Re-
producibility simply with a regression of the form

Reproducibility ∼ Rigour

Since we simulated the data, we can calculate the
“true” causal effect, which in this case is 1 (see Ap-
pendix A for details). We can hence validate our regres-
sion approach and see if it is capable of correctly inferring
the true causal effect. Figure 4 shows that the regression
approach is capable of retrieving the correct result. We
deliberately chose a moderate sample size of 1000 for our
simulation. Point estimates derived from the simulated
data thus only approximate the theoretical values.

The example serves to highlight two points. First, it
can be helpful to plot the data to gain an intuitive un-
derstanding of what the assumed relationship looks like.
Second, sound causal inference does not necessarily in-
volve controlling for many variables. In some cases, a
simple regression might be all that is needed. Not all
causal effects are equally straightforward to measure, as
the next examples show.

B. The effect of Open data on Citations

Suppose we are interested in the total causal effect of
Open data on Citations. Previous research on the topic
indicates that articles sharing data tend to receive more
citations (Piwowar, Day, and Fridsma, 2007; Piwowar
and Vision, 2013; Kwon and Motohashi, 2021). Accord-
ing to our model (Figure 1), there are multiple pathways
from Open data to Citations. To estimate the causal ef-
fect, we need to make sure that all causal paths are open,
and all non-causal paths are closed (see panel A in Fig-
ure 5).

There are two causal paths, both indirect: one medi-
ated by Data reuse and one mediated by Published. To
estimate the total causal effect of Open data on Cita-
tions we hence should not control for either Data reuse

or Published. In contrast, typical approaches in scien-
tometrics examine only the literature published in jour-
nals and hence implicitly condition on Published. This
implicit conditioning closes the causal path, and thus bi-
ases our estimate of the total causal effect of Open data
on Citations.

The non-causal paths pass through Rigour, Field or
Reproducibility. On all paths passing through Rigour, it
acts as a confounder, and we can hence close all these non-
causal paths by controlling for Rigour. There is only one
non-causal path where Field is acting as a confounder,
and we can close it by conditioning on it. The remaining
paths pass through Reproducibility, and it acts as a col-
lider on all those paths. Hence, those paths are already
closed. In summary, we should control for Rigour and
Field.

The final regression model to estimate the causal effect
of Open data on Citations is thus as follows:

Citations ∼ Open data + Field + Rigour

Figure 5 (B) shows the effect estimates from our regres-
sion, alongside the true effect of Open data on Citations,
which is 5.39. We can see that our model is indeed able
to estimate the causal effect of Open data on Citations.

This example highlights key components of causal in-
ference: controlling for confounders (Rigour and Field),
not controlling for mediators (Data reuse and Published),
and not controlling for colliders (Reproducibility). This
shows that constructing an appropriate DAG is crucial
when aiming to draw causal conclusions. Without mak-
ing assumptions explicit via a DAG, it would be unclear
which variables should be controlled for and which not.

Some researchers might be tempted to defer the de-
cision of what variables to control for to the data (for
example via stepwise regression) or not make any deci-
sion at all by simply including all available variables (an
approach termed “causal salad” by McElreath (2020)).
However, neither approach is able to correctly identify
the correct variables to control for. Stepwise regression
would in this case suggest including the mediating vari-
ables (and even excluding Open data), leading to wrong
causal conclusions (see Appendix C). Including all vari-
ables could similarly lead the researcher to conclude that
Open data has no effect on Citations (see Appendix D).

The example highlights that relatively simple DAGs
are often sufficient to uncover limitations to identifying
causal effects. For instance, if we had not measured Field,
controlling for it and identifying the causal effect would
become impossible. In that case, it is irrelevant whether
there are any other confounding effects between Citations
and Open data, since those effects do not alleviate the
problem of being unable to control for Field.
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Figure 5. Effect of Open data on Citations. A: DAG illustrating which variables to condition on (or not). Open nodes are
marked in green, closed nodes are marked in orange, and nodes that are open in one path but closed in another are marked
semi-green and semi-orange. Nodes that are controlled for are marked by a thick outline. B: Effect estimate (regression
coefficients with 95%-CI).

C. The effect of Open data on Reproducibility

Suppose we are interested in the causal effect of Open
data on Reproducibility. Such an effect is often assumed
in debates on how to increase the reproducibility across
the scholarly literature (Molloy, 2011). The empirical
evidence so far is less convincing (Nuijten et al., 2017;
Hardwicke et al., 2018, 2021; Nosek et al., 2022, p. 721).
In our DAG in Figure 1, we assume there is a causal ef-
fect of Open data on Reproducibility. The causal effect
is direct, there is no indirect effect of Open data on Re-
producibility. Although the DAG does not specify these
parametric assumptions, in our simulation, the effect is
positive.

1. Conditioning on a collider may bias estimates

Many bibliometric databases predominantly cover re-
search published in journals or conferences, which result
from a clear selection process. Science studies frequently
relies on such bibliometric databases for analysis. By only
considering the literature published in journals, we (im-
plicitly) condition on Published. On the path Open data
→ Published ← Rigour → Reproducibility, Published acts
as a collider. As discussed in Section II, conditioning on
a collider can bias our estimates.

We show the level of Reproducibility for Open data af-
ter conditioning on Published in Figure 6. The level of

Closed data

Open data

1.2 1.4 1.6 1.8 2.0
Reproducibility

Figure 6. Reproducibility of research published in journals
with and without Open data. Displaying means with 95%-CI.

Reproducibility is higher for research published in jour-
nals without Open data than with Open data. This might
seem counterintuitive, since the causal effect of Open data
on Reproducibility is in fact positive in our model.

The apparent negative effect is due to the fact that
we conditioned on Published, by analysing only the pub-
lished research. If we condition on a collider, we open
that path; in this case we open the path Open data →
Published ← Rigour → Reproducibility. How condition-
ing on a collider biases the estimates is difficult to foresee,
especially in more complicated cases. In this case, how-
ever, there is a reasonably intuitive explanation. In our
model, Published depends on both Open data and Rigour



9

(and Novelty, but that is not relevant here): research is
more likely to be published in a journal if it has Open data
and if it is more rigorous. As a result, research that is
published in a journal without Open data tends to have
higher Rigour. If research had neither Open data nor
sufficiently high Rigour, it would be less likely to be pub-
lished in a journal at all6. Therefore, published research
without Open data has higher Rigour. This higher Rigour
in turn affects Reproducibility, leading to higher Repro-
ducibility for published research without Open data.

The example shows how we can draw completely wrong
conclusions if we do not use clear causal thinking. Based
on the results in Figure 6, some might incorrectly con-
clude that Open data has a negative causal effect on Re-
producibilty. However, in our model, Open data has a pos-
itive causal effect on Reproducibility. Hence, we should
take great care in interpreting empirical results without
causal reflection.

Sometimes, when determining what variables to con-
trol for, scholars are inclined to think in terms of ensur-
ing that cases are “comparable”, or to make sure that
we compare “like with like”. Although the intuition is
understandable, its application is only limited, and at
times can be misleading. That is, using the “like with
like” intuition, we might be inclined to condition on Pub-
lished, because we then compare published papers with
other published papers. If we do so, we bias the estima-
tion of the causal effect of Open data on Reproducibility,
as explained above. In this case, comparing “like with
like” may create problems.

2. Identifying the causal effect

As explained, conditioning on the collider Published
opens the non-causal path Open data → Published ←
Rigour → Reproducibility. This non-causal path is open
because Published is open (because it is a collider that is
conditioned on), and because Rigour is open (because it
is a confounder that is not conditioned on). We can hence
close this non-causal path by conditioning on Rigour. In
addition, Rigour acts as a confounder on the non-causal
path Open data ← Rigour → Reproducibility. To identify
the causal effect, we hence also need to close this non-
causal path by conditioning on Rigour. In short, we close
both non-causal paths by conditioning on Rigour.

Panel A in Figure 7 shows the DAG for this question.
There are no other non-causal paths that are open, and
no causal paths that are closed. The regression model is

6 In our DAG, Published is also affected by Novelty, and the same
reasoning applies there. In this case, research that is published
in a journal, but that does not share Open data and has low
Rigour, is then more likely to have high Novelty. Otherwise, it
again would most likely not have been published in a journal at
all.

thus

Reproducibility ∼ Open data + Rigour

but still restricted to only published research.
The true effect of Open data on Reproducibility is sim-

ply the coefficient of the effect of Open data on Repro-
ducibility that we used in our simulation: it is 0.4 (see Ta-
ble I). After controlling for Rigour, our regression model
is able to estimate this parameter correctly (panel B of
Figure 7), although we are only considering research pub-
lished in journal articles, therefore “conditioning on a col-
lider”.

The reason we can estimate the parameter correctly is
that conditioning on Rigour closes the path Open data
→ Published ← Rigour → Reproducibility. Whether Pub-
lished is conditioned on is then irrelevant for the identi-
fication of the causal effect. If we consider all research
instead of only research published in journal articles, our
estimates only change minimally.

In identifying the causal effect of Open data on Repro-
ducibility, we do not need to control for other variables,
such as Novelty. If there were an additional confounder
between Published and Data reuse, this would not change
anything in terms of what variables we should control
for to identify the effect of Open data on Reproducibility.
This shows how making the DAG richer and more nu-
anced does not necessarily change the identification. Of
course, other changes to the DAG do change the identi-
fication: if there were another confounder between Open
data and Reproducibility, we would need to control for it.

3. Interpreting regression coefficients and measurement
problems

Often, researchers not only interpret the coefficient
that is the subject of their main research question, but
also interpret the other coefficients. However, it is easy to
draw wrong conclusions for those other coefficients, and
interpret them incorrectly as causal effects. Since these
other effects are often represented in the second table in
an article, this was referred to as the “Table 2 fallacy” by
Westreich and Greenland (2013).

Let us briefly consider the coefficient for the factor that
we controlled for, namely Rigour. We estimated the co-
efficient for Rigour in our regression model to be about
1. What does this estimate represent? From the point
of view of the effect of Rigour on Reproducibility there
are two causal paths: one directly from Rigour to Repro-
ducibility and one indirectly, mediated by Open data (we
illustrated this earlier in Figure 4). Since we controlled
for Open data in our regression model, it means we closed
the indirect causal path. All other non-causal paths are
also closed, and so there is only one path that is still
open, which is the direct causal path from Rigour to Re-
producibility. Hence, our estimate of 1 should represent
the direct causal effect of Rigour on Reproducibility, and
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Figure 7. Effect of Open data on Reproducibility. A: DAG illustrating which variables to condition on (or not). Open nodes
are marked in green, closed nodes are marked in orange, and nodes that are open in one path but closed in another are
marked semi-green and semi-orange. Nodes that are controlled for are marked by a thick outline. B: Effect estimate (regression
coefficients with 95%-CI).

indeed this corresponds with the coefficient we used in
our simulation (see again Table I).

In the example above, we should interpret the esti-
mate of the effect of Rigour on Reproducibility as a di-
rect causal effect, not as a total causal effect. In other
cases, coefficients for the controlled factors might not cor-
respond to any causal effect. Indeed, we should carefully
reason about any effect we wish to identify, and not in-
terpret any estimates for controlled variables as causal
without further reflection.

Additionally, most empirical studies will suffer from
measurement problems. That is, the concept of interest
is often not observed directly, but measured indirectly
through some other proxies or indicators. These issues
can be readily incorporated in structural causal models,
and might make certain limitations explicit. For exam-
ple, in the analysis above we controlled for Rigour to
infer the causal effect of Open data on Reproducibility,
but in reality, we most likely cannot control for Rigour
directly. Instead, we are controlling for the measurement
of Rigour, for example as measured by expert assessment
of the level of rigour. We could include this in the struc-
tural causal model as Rigour → Rigour measurement. We
cannot directly control for Rigour, and we can only con-
trol for Rigour measurement, which does not (fully) close
the backdoor path between Open Data and Reproducibil-
ity, and might hence still bias the estimate of the causal
effect. If Rigour measurement would additionally be af-
fected by other factors, such as Published, this might in-

troduce additional complications. Taking measurement
seriously can expose additional challenges that need to
be addressed (McElreath, 2020, Chapter 15).

IV. DISCUSSION

The study of science is a broad field with a variety
of methods. Academics have employed a range of per-
spectives to understand science’s inner workings, driven
by the field’s diversity in researchers’ disciplinary back-
grounds (Sugimoto et al., 2011; Liu et al., 2023). In
this paper we highlight why causal thinking is impor-
tant for the study of science, in particular for quantita-
tive approaches. In doing so, we do not mean to sug-
gest that we always need to estimate causal effects. De-
scriptive research is valuable in itself, providing context
for uncharted phenomena. Likewise, studies that predict
certain outcomes are very useful. However, neither de-
scriptive nor predictive research should be interpreted
causally. Both descriptive and predictive work might be
able to inform discussions about possible causal mecha-
nisms, and may provide some insight about what might
be happening. However, without making causal thinking
explicit, they can easily lead to wrong interpretations
and conclusions. We covered several related potential
issues in data analysis, such as the Table 2 fallacy (see
Section III C) or the “causal salad” approach (see Sec-
tion III B).
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A. The case for causal thinking

Quantitative research in science studies should make a
clear distinction between prediction and causation. For
example, if we observe that preregistered studies are more
likely to be reproducible, we might use this information
to predict which studies are more likely to be repro-
ducible. This might be a perfectly fine predictive model.
But is this also a causal effect, where preregistering a
study causes the results to be more reproducible? Or is
the observed relation between preregistration and repro-
ducibility due to an unobserved confounding factor, such
as methodological rigour? Only with an adequate causal
model can we try to answer such questions.

The difference between prediction and causation be-
comes critical when we make policy recommendations.
Should research funders mandate open data, in an at-
tempt to improve reproducibility? Besides the problems
that such a one-size-fits-all approach might have (Ross-
Hellauer et al., 2022), the crucial question is whether or
not such an intervention would increase reproducibility.
In our DAG, we have assumed that Open data has a mod-
erate but positive effect on Reproducibility. As discussed
in Section III C, naively analysing the published litera-
ture might lead one to incorrectly conclude that Open
data is detrimental to Reproducibility. It is therefore im-
perative that policy recommendations are grounded in
careful causal analysis of empirical findings to avoid seri-
ous unintended consequences.

More fundamentally, causal thinking is a useful de-
vice to connect theories to empirical analyses. Many
studies in the social sciences suffer from a vague connec-
tion between their theoretical or verbal description and
their empirical approach (Yarkoni, 2019). A key issue
is to translate theoretically derived research questions
into estimands (statements about what we aim to esti-
mate), and subsequently, strategies for estimating those
estimands (Lundberg, Johnson, and Stewart, 2021). In
other words, we have to link our statistical models and
estimates clearly to our theoretical concepts and research
questions (McElreath, 2020). Without causal thinking, it
is impossible to improve our theoretical understanding of
how things work. While building increasingly rich causal
diagrams is important in revealing underlying assump-
tions, this might also reveal deeper problems with our
theoretical accounts (Nettle, 2023). Deciding on which
parts of the system under study to include and which
to omit (Smaldino, 2023, 318), as well as resisting the
urge to add nuance on every turn (Healy, 2017), need to
accompany any empirical attempt of inferring causality.

Methodologically, structural causal models only make
minimal assumptions. If identifying a certain causal ef-
fect based on a structural causal model is not possible,
stronger assumptions might still allow to identify causal
effects. As we have outlined in Section II, well-known
causal inference techniques, such as instrumental vari-
ables, difference-in-difference, and regression discontinu-
ity, rely on stronger assumptions, making assumptions

about the functional form of the relationships (e.g. lin-
ear, or parallel trends), or about thresholds or hurdles.
That is the essence of causal inference: we make assump-
tions to build a causal model, and use these assumptions
to argue whether we can identify the causal effect given
the observations we make.

Any claims of causal effects derived via causal infer-
ence will always depend on the assumptions made. Often,
we cannot verify the assumptions empirically, but they
might have implications that we can verify empirically.
If we find no empirical support for these testable impli-
cations, we might need to go back to the drawing board.
Finding empirical support for testable implications still
does not imply that our assumptions are correct; other
assumptions might have similar testable implications. In-
deed, we already emphasised this in the context of the
DAGs: we cannot say whether a DAG is correct, but we
might be able to say whether a DAG is incorrect.

B. Going beyond—why causal thinking is useful even if
causal inference is impossible

In practice, it might not always be possible to estimate
a causal effect, because some variables are not observed in
a study, or might even be unobservable (Rohrer, 2018).
We believe that making causal thinking explicit is still
highly beneficial to the broader research community in
such cases. First, the process of having gone through
the exercise of trying to construct a causal model is not
wasted, as the model itself might be useful. Researchers
might be able to build on the model in subsequent studies,
and refine or revise it.

Secondly, causal models make explicit researchers’ be-
liefs of how specific causal mechanisms work. Other re-
searchers might disagree with those causal models. This
is a feature, not a bug. By making disagreement visible, it
might be possible to deduce different empirically testable
implications, thus advancing the research further, and
building a cumulative evidence base.

Thirdly, causal models make explicit why causal es-
timates might be impossible in a given study. Often,
researchers state in their conclusion that there might be
missing confounders and that they therefore cannot draw
causal conclusions (but they may nonetheless proceed to
provide advice that implicitly assumes causality). Simply
stating that confounders may exist is not enough. If we,
as researchers, believe that we have missed confounders,
we should make explicit what we believe we missed. We
can of course never be sure that we considered all rele-
vant aspects, but that should not prevent us from trying
to be as explicit as possible.

By making explicit how a causal effect is not identifi-
able, we might be able to suggest variables that we should
try to collect in the future. Additionally, by making ex-
plicit how our estimates deviate from a causal effect, we
might make informed suggestions of the direction of this
deviation, e.g. whether we are under- or overestimating
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the causal effect. Possibly, we might even use some form
of sensitivity analysis (Cinelli et al., 2019) to make more
informed suggestions.

The social sciences have a distinct advantage over other
scientific disciplines when causal inference is challenging:
we can talk to people. In case quantitative methods strug-
gle to identify causal relationships, qualitative methods
might still provide insight into causal effects, for instance
because in interviews people can point out what they
believe to be a causal effect. For example, suppose we
are interested in the effect of Open data on research ef-
ficiency but struggle to quantify the causal effect. We
could talk to researchers who have reused openly avail-
able datasets, asking whether and how publicly available
data has helped them to conduct their research more ef-
ficiently. Responses like these might uncover causal evi-
dence where quantitative methods encounter more diffi-
culties.

Finally, developing explicit causal models can benefit
qualitative research as well. For example, when develop-
ing an interview guide to study a particular phenomenon,
it is important to first develop a clear understanding
of the potential causal pathways related to that phe-
nomenon. Furthermore, even if qualitative data cannot
easily quantify the precise strength of a causal relation-
ship, it may corroborate the structure of a causal model.
Ultimately, combining quantitative causal identification
strategies with direct qualitative insights on mechanisms
can lead to more comprehensive evidence (Munafò and
Smith, 2018; Tashakkori, Johnson, and Teddlie, 2021),
strengthening and validating our collective understand-
ing of science.
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Appendix A: Theoretical effect of Rigour on Reproducibility

There is a direct effect of Rigour on Reproducibility and a indirect effect, mediated by Open data. Let 𝑋 be Rigour,
𝑍 Open Data and 𝑌 Reproducibility. We then have

𝑋 ∼ Normal(0, 1)

𝑍 ∼ Bernoulli(logistic(𝛼𝑍 + 𝛽𝑋 + 𝜙𝐹 ))

𝑌 ∼ Normal(𝛼𝑌 + 𝛾𝑋 + 𝜃𝑍, 𝜎)

If we try to estimate a simple OLS 𝑌 = ̂𝛼 + ̂𝛽𝑋, then

̂𝛽 = Cov(𝑋, 𝑌 )
Var(X) .

Working out Cov(𝑋, 𝑌 ), we can use that 𝑌 = 𝛼𝑌 + 𝛾𝑋 + 𝜃𝑍 + 𝜖𝜎 where 𝜖𝜎 ∼ Normal(0, 𝜎), and obtain that

Cov(𝑋, 𝑌 ) = 𝛾Cov(𝑋, 𝑋) + 𝜃Cov(𝑋, 𝑍) + Cov(𝑋, 𝜖𝜎),
where Cov(𝑋, 𝑋) = Var(𝑋, 𝑋) = 12 = 1 and Cov(𝑋, 𝜖𝜎) = 0, because 𝜖𝜎 is independent of 𝑋. Hence, we obtain

Cov(𝑋, 𝑌 ) = 𝛾 + 𝜃Cov(𝑋, 𝑍).
Writing out Cov(𝑋, 𝑍), we find that Cov(𝑋, 𝑍) = 𝐸(𝑋𝑍) because 𝐸(𝑋) = 0. Then elaborating 𝐸(𝑋𝑍) =
𝐸(𝐸(𝑋𝑍|𝐹)), we can expand 𝐸(𝑋𝑍|𝐹) as a sum

𝐸(𝑋𝑍|𝐹) = ∫
𝑥

1
∑
𝑧=0

𝑥𝑧𝑃(𝑍 = 𝑧 ∣ 𝑋 = 𝑥, 𝐹)𝑃(𝑋 = 𝑥)d𝑥

Obviously, 𝑥𝑧 = 0 when 𝑧 = 0, while 𝑥𝑧 = 𝑥 when 𝑧 = 1. Hence, this simplifies to only the 𝑧 = 1 part, such that

𝐸(𝑋𝑍|𝐹) = ∫
𝑥

𝑥𝑃(𝑍 = 1 ∣ 𝑋 = 𝑥, 𝐹)𝑃(𝑋 = 𝑥)d𝑥

or

𝐸(𝑋𝑍 ∣ 𝐹) = ∫
𝑥

𝑥 ⋅ logistic(𝛼𝑍 + 𝛽𝑥 + 𝜙𝐹 ) ⋅ 𝑓(𝑥)d𝑥,

where 𝑓(𝑥) is the pdf of 𝑋 ∼ Normal(0, 1). Unfortunately, this does not seem to have an analytical solution, so we
numerically integrate this.

The total causal effect of Rigour on Reproducibility is very close to the direct causal effect of Rigour on Reproducibility
(which is 1), because the indirect effect via Rigour → Open data is small.

Appendix B: Theoretical effect of Open data on citations

There are two causal paths of the effect of Open data on Citations. The first causal path is mediated by Data reuse
and the second is mediated by Published. Let 𝑋 be Open data, 𝑌 be Citations, 𝐷 be Data reuse and 𝑃 be Published.
Since we use a normal distribution for Citations we can simply write

𝐸(𝑌 ) = 𝛼 + 𝛽𝐷𝑌 𝐷 + 𝛽𝑃𝑌 𝑃 + 𝛽novelty,Y ⋅ Novelty + 𝛽rigour,Y ⋅ Rigour + 𝛽field,Y ⋅ Field,
where we can consider Field a dummy variable, representing the effect of field 2 relative to field 1 (i.e. field 1 is the
reference category).

The change in 𝑌 , i.e. Δ𝑌 , relative to changing 𝑋, i.e. Δ𝑋, from 0 to 1 is then
Δ𝑌 (𝑋)

Δ𝑋 = 𝛽𝐷𝑌
Δ𝐷(𝑋)

Δ𝑋 + 𝛽𝑃𝑌
Δ𝑃(𝑋)

Δ𝑋
The first part is simple, since 𝐷 is a normal distribution, yielding Δ𝐷(𝑋)

Δ𝑋 = 𝛽𝑋𝐷. The second part is more convo-
luted, since 𝑃 is a logistic distribution of a normal variable. For that reason, we calculate Δ𝑃(𝑋)

Δ𝑋 numerically using
logitnorm::momentsLogitnorm (version 0.8.38) in R.
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Appendix C: Validation of argument against stepwise regression

In Section III B, we claimed that stepwise regression would suggest to include the mediating variables Published
and Open data and to remove Open Data from the regression model. The output below demonstrates this behaviour.

We first start with a full model that includes all variables.

full_model <- lm(citations ~ ., data = df)

Next, we let R select variables in a stepwise fashion, considering both directions (including or excluding variables)
at each step.

step_model <- MASS::stepAIC(full_model, direction = "both", trace = TRUE)

Start: AIC=14.39
citations ~ rigour + novelty + field + open_data + published +

data_reuse + reproducibility

Df Sum of Sq RSS AIC
- reproducibility 1 0.0 998.4 12.42
- open_data 1 0.2 998.6 12.59
<none> 998.4 14.39
- published 1 407.8 1406.2 354.90
- rigour 1 1683.9 2682.2 1000.65
- novelty 1 1946.4 2944.7 1094.02
- data_reuse 1 3620.3 4618.7 1544.10
- field 1 10158.0 11156.4 2426.01

Step: AIC=12.42
citations ~ rigour + novelty + field + open_data + published +

data_reuse

Df Sum of Sq RSS AIC
- open_data 1 0.2 998.6 10.61
<none> 998.4 12.42
+ reproducibility 1 0.0 998.4 14.39
- published 1 407.8 1406.3 352.94
- novelty 1 1946.4 2944.9 1092.06
- rigour 1 3199.3 4197.7 1446.55
- data_reuse 1 3623.4 4621.8 1542.79
- field 1 10171.5 11170.0 2425.23

Step: AIC=10.61
citations ~ rigour + novelty + field + published + data_reuse

Df Sum of Sq RSS AIC
<none> 998.6 10.61
+ open_data 1 0.2 998.4 12.42
+ reproducibility 1 0.0 998.6 12.59
- published 1 505.6 1504.2 418.26
- novelty 1 2394.6 3393.2 1231.78
- rigour 1 3281.9 4280.5 1464.06
- data_reuse 1 4743.2 5741.9 1757.78
- field 1 14922.0 15920.6 2777.61

We can see that the algorithm first removes Open data, and then Reproducibility. The final model is then as follows:
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summary(step_model)

Call:
lm(formula = citations ~ rigour + novelty + field + published +

data_reuse, data = df)

Residuals:
Min 1Q Median 3Q Max

-3.08249 -0.68542 -0.01525 0.70217 3.02677

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.26727 0.11955 -10.60 <2e-16 ***
rigour 1.92751 0.03372 57.16 <2e-16 ***
novelty 2.01798 0.04133 48.82 <2e-16 ***
field 10.11475 0.08299 121.87 <2e-16 ***
publishedTRUE 2.06206 0.09192 22.43 <2e-16 ***
data_reuse 1.95682 0.02848 68.71 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.002 on 994 degrees of freedom
Multiple R-squared: 0.9878, Adjusted R-squared: 0.9878
F-statistic: 1.616e+04 on 5 and 994 DF, p-value: < 2.2e-16

Appendix D: The case against causal salad

Table II illustrates the result of the ‘causal salad’ approach of including all variables. Because this model controls
for mediators, the effect of Open data on Citations appears to be zero. The researcher could thus be led to conclude
that Open data has no effect on Citations, which is incorrect.

Table II: Example of “causal salad”. The “Correct model” to estimate
the causal effect of Open data on Citations identifies the effect to be
5.29. If the researcher were to include all variables, it might seem as if
there was no effect of Open data on Citations. Values in brackets show
p-values.

Correct model ’Causal salad’ model
Intercept -2.519 -1.295

(<0.001) (<0.001)
Open Data 5.294 -0.061

(<0.001) (0.655)
Field 10.213 10.140

(<0.001) (<0.001)
Rigour 2.355 1.919

(<0.001) (<0.001)
Novelty 2.010

(<0.001)
Data reuse 1.964

(<0.001)
Published 2.082
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Correct model ’Causal salad’ model
(<0.001)

Reproducibility 0.006
(0.849)

Num.Obs. 1000 1000
R2 0.726 0.988
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